Potential urine proteomics biomarkers for primary nephrotic syndrome

[1]  J. Klein,et al.  Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy , 2015, Proteomics.

[2]  Y. Kim,et al.  Anti-Phospholipase A2 Receptor Antibody as Prognostic Indicator in Idiopathic Membranous Nephropathy , 2015, American Journal of Nephrology.

[3]  C. Pan,et al.  Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease , 2014, Journal of internal medicine.

[4]  Hua Yang,et al.  Urinary cell mRNA profiles and differential diagnosis of acute kidney graft dysfunction. , 2014, Journal of the American Society of Nephrology : JASN.

[5]  F. Frey,et al.  Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. , 2014, Kidney international.

[6]  J. Deegens,et al.  The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. , 2014, Kidney international.

[7]  V. Pérez,et al.  Urinary Peptide Profiling to Differentiate between Minimal Change Disease and Focal Segmental Glomerulosclerosis , 2014, PloS one.

[8]  R. Zubarev,et al.  Urinary Prognostic Biomarkers and Classification of IgA Nephropathy by High Resolution Mass Spectrometry Coupled with Liquid Chromatography , 2013, PloS one.

[9]  L. Su,et al.  Urinary proteomics analysis for sepsis biomarkers with iTRAQ labeling and two-dimensional liquid chromatography–tandem mass spectrometry , 2013, The journal of trauma and acute care surgery.

[10]  K. Bae,et al.  Urinary Proteomic Biomarkers for Diagnosis and Risk Stratification of Autosomal Dominant Polycystic Kidney Disease: A Multicentric Study , 2013, PloS one.

[11]  Chrysta Lienczewski,et al.  Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multi-disciplinary approach , 2012, Kidney international.

[12]  S. Kiley,et al.  Evolution of the urinary proteome during human renal development and maturation: variations with gestational and postnatal age , 2012, Pediatric Research.

[13]  U. Armato,et al.  A stable panel comprising 18 urinary proteins in the human healthy population , 2012, Proteomics.

[14]  H. Mischak,et al.  Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury. , 2010, Kidney international.

[15]  克治 桑門 海外論文紹介 : M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy , 2010 .

[16]  C. Rivard,et al.  Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. , 2010, Kidney international.

[17]  David G Camp,et al.  Shotgun proteomics identifies proteins specific for acute renal transplant rejection , 2010, Proteomics. Clinical applications.

[18]  Kamyar Kalantar-Zadeh,et al.  Association of soluble endotoxin receptor CD14 and mortality among patients undergoing hemodialysis. , 2009, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[19]  J. G. van den Berg,et al.  Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. , 2008, Kidney international.

[20]  V. Thongboonkerd Biomarker discovery in glomerular diseases using urinary proteomics , 2008, Proteomics. Clinical applications.

[21]  L. Barisoni,et al.  Current views on collapsing glomerulopathy. , 2008, Journal of the American Society of Nephrology : JASN.

[22]  E. Bertini,et al.  COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. , 2007, Journal of the American Society of Nephrology : JASN.

[23]  V. D’Agati,et al.  Adult minimal-change disease: clinical characteristics, treatment, and outcomes. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[24]  H. Schnaper,et al.  A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[25]  Peter Nürnberg,et al.  Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible , 2006, Nature Genetics.

[26]  F. Scolari,et al.  Repetitive Fragmentation Products of Albumin and α1-Antitrypsin in Glomerular Diseases Associated with Nephrotic Syndrome , 2006 .

[27]  Tom Greene,et al.  Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate , 2006, Annals of Internal Medicine.

[28]  S. Shankland,et al.  The podocyte's response to injury: role in proteinuria and glomerulosclerosis. , 2006, Kidney international.

[29]  B. Lisowska-Myjak AAT as a diagnostic tool. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[30]  W. Whittier,et al.  Renal biopsy: update , 2004, Current opinion in nephrology and hypertension.

[31]  G. Remuzzi,et al.  Immunosuppressive treatment for idiopathic membranous nephropathy: a systematic review. , 2004, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[32]  O. Gribouval,et al.  NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. , 2004, Kidney international.

[33]  J. Haymann,et al.  Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. , 2002, The New England journal of medicine.

[34]  N. McElvaney,et al.  α1-Antitrypsin Deficiency: Biological Answers to Clinical Questions , 2001 .

[35]  G. D'Amico,et al.  A modern approach to selectivity of proteinuria and tubulointerstitial damage in nephrotic syndrome. , 2000, Kidney international.

[36]  R. Ferrell,et al.  Familial nephrotic syndrome: clinical spectrum and linkage to chromosome 19q13. , 2000, Kidney international.

[37]  M. Pericak-Vance,et al.  Clinical and genetic heterogeneity in familial focal segmental glomerulosclerosis. International Collaborative Group for the Study of Familial Focal Segmental Glomerulosclerosis. , 1999, Kidney international.

[38]  M. Mizuno,et al.  Proteinuria and damage to tubular cells--is complement a culprit? , 1998, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[39]  M. Haas,et al.  Changing etiologies of unexplained adult nephrotic syndrome: a comparison of renal biopsy findings from 1976-1979 and 1995-1997. , 1997, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[40]  W. Deen,et al.  Charge selectivity of the glomerular filtration barrier in healthy and nephrotic humans. , 1993, The Journal of clinical investigation.

[41]  B. Myers,et al.  Selectivity of the glomerular filtration barrier in healthy and nephrotic humans. , 1993, American journal of nephrology.

[42]  J. Garin,et al.  Urine sample preparation and fractionation for global proteome profiling by LC-MS. , 2015, Methods in molecular biology.

[43]  M. Weeks Urinary proteome profiling using 2D-DIGE and LC-MS/MS. , 2010, Methods in molecular biology.

[44]  R. Kitchens Role of CD14 in cellular recognition of bacterial lipopolysaccharides. , 2000, Chemical immunology.

[45]  G. Palomaki,et al.  Reference distributions for the positive acute phase proteins, α1‐acid glycoprotein (orosomucoid), α1‐antitrypsin, and haptoglobin: A comparison of a large cohort to the world’s literature , 2000, Journal of clinical laboratory analysis.

[46]  E. Jones,et al.  Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. , 2000, American journal of kidney diseases : the official journal of the National Kidney Foundation.