The Galerkin finite element method for a multi-term time-fractional diffusion equation

We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.

[1]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[2]  R. Gorenflo,et al.  AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES , 1999 .

[3]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[4]  Igor M. Sokolov,et al.  ANOMALOUS TRANSPORT IN EXTERNAL FIELDS : CONTINUOUS TIME RANDOM WALKS AND FRACTIONAL DIFFUSION EQUATIONS EXTENDED , 1998 .

[5]  Enrique Zuazua,et al.  Spike controls for elliptic and parabolic PDEs , 2013, Syst. Control. Lett..

[6]  Bangti Jin,et al.  Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H - s , 0 ≤ s ≤ 1 , 2012, NAA.

[7]  Masahiro Yamamoto,et al.  Initial-boundary value problems for linear diffusion equation with multiple time-fractional derivatives , 2013, 1306.2778.

[8]  Wen Chen,et al.  Boundary particle method for Laplace transformed time fractional diffusion equations , 2013, J. Comput. Phys..

[9]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[10]  Da Xu,et al.  Alternating Direction Implicit Galerkin Finite Element Method for the Two-Dimensional Time Fractional Evolution Equation , 2014 .

[11]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[12]  Bangti Jin,et al.  Numerical identification of a Robin coefficient in parabolic problems , 2012, Math. Comput..

[13]  I. L. El-Kalla,et al.  Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations , 2010 .

[14]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[15]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[16]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[17]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[18]  Ya-Nan Zhang,et al.  Error Estimates of Crank-Nicolson-Type Difference Schemes for the Subdiffusion Equation , 2011, SIAM J. Numer. Anal..

[19]  V. Thomée,et al.  Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .

[20]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[23]  Jun Zou,et al.  Numerical Reconstruction of Heat Fluxes , 2005, SIAM J. Numer. Anal..

[24]  Zhiyuan Li,et al.  Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients , 2013, Appl. Math. Comput..

[25]  Rina Schumer,et al.  Fractal mobile/immobile solute transport , 2003 .

[26]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[27]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[28]  John T. Katsikadelis,et al.  Numerical solution of multi‐term fractional differential equations , 2009 .

[29]  Jingjun Zhao,et al.  Stability and Convergence of an Effective Finite Element Method for Multiterm Fractional Partial Differential Equations , 2013 .

[30]  Karl Kunisch,et al.  Parabolic Control Problems in Measure Spaces with Sparse Solutions , 2013, SIAM J. Control. Optim..

[31]  George E. Karniadakis,et al.  Exponentially accurate spectral and spectral element methods for fractional ODEs , 2014, J. Comput. Phys..

[32]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[33]  Mark M Meerschaert,et al.  Analytical time-domain Green's functions for power-law media. , 2008, The Journal of the Acoustical Society of America.

[34]  K. Mustapha An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .

[35]  William Rundell,et al.  An inverse problem for a one-dimensional time-fractional diffusion problem , 2012 .

[36]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[37]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[38]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..