Volatile general anesthetic sensing with organic field-effect transistors integrating phospholipid membranes.

[1]  Michele Muccini,et al.  Effects of surface chemical composition on the early growth stages of alpha-sexithienyl films on silicon oxide substrates. , 2006, The journal of physical chemistry. B.

[2]  T. Urisu,et al.  Supported phospholipid bilayer formation on hydrophilicity-controlled silicon dioxide surfaces. , 2006, Physical chemistry chemical physics : PCCP.

[3]  M. Weinrich,et al.  Halothane changes the domain structure of a binary lipid membrane. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[4]  A. Pron,et al.  Effect of macromolecular parameters and processing conditions on supramolecular organisation, morphology and electrical transport properties in thin layers of regioregular poly(3-hexylthiophene) , 2006 .

[5]  Ullrich Pietsch,et al.  High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures , 2004 .

[6]  Lionel Hirsch,et al.  Field-effect transistors based on poly(3-hexylthiophene): Effect of impurities , 2007 .

[7]  A. Gelperin,et al.  Correlation between Oligothiophene Thin Film Transistor Morphology and Vapor Responses , 2002 .

[8]  George G. Malliaras,et al.  Organic Electronics at the Interface with Biology , 2010 .

[9]  P. Pohl,et al.  110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  Marianna Ambrico,et al.  Phospholipid film in electrolyte-gated organic field-effect transistors , 2012 .

[11]  L. Torsi,et al.  Interface and gate bias dependence responses of sensing organic thin-film transistors. , 2005, Biosensors & bioelectronics.

[12]  Gaetano Scamarcio,et al.  Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors , 2012, Proceedings of the National Academy of Sciences.

[13]  Luisa Torsi,et al.  Rapid Thermal Processing of α-Hexathienylene Thin-Film Transistors , 1995 .

[14]  Satyavani Vemparala,et al.  Computational studies on the interactions of inhalational anesthetics with proteins. , 2010, Accounts of chemical research.

[15]  Ullrich Pietsch,et al.  High-Resolution X-Ray Scattering , 2004 .

[16]  N. P. Franks,et al.  Where do general anaesthetics act? , 1978, Nature.

[17]  Zhenan Bao,et al.  Fabrication of low-cost electronic biosensors , 2009 .

[18]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[19]  P. McEuen,et al.  Supported lipid bilayer/carbon nanotube hybrids. , 2007, Nature nanotechnology.

[20]  W. R. Lieb,et al.  Molecular and cellular mechanisms of general anaesthesia , 1994, Nature.

[21]  Zhenan Bao,et al.  Effect of Mesoscale Crystalline Structure on the Field‐Effect Mobility of Regioregular Poly(3‐hexyl thiophene) in Thin‐Film Transistors , 2005 .

[22]  Luisa Torsi,et al.  Organic thin-film transistors as plastic analytical sensors. , 2005, Analytical chemistry.

[23]  J. Vincent Cuticle under attack , 1978, Nature.

[24]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.