A Polymorphic λ-calculus with Type:Type

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of acknowledgment of the authors and individuals contributors to the work; and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license with payment of fee to the Systems Research Center. All rights reserved.

[1]  A. W. Hofmann The Theory of Types , 1964 .

[2]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[3]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[4]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[5]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[6]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[7]  Nancy Jean Mccracken,et al.  An investigation of a programming language with a polymorphic type structure. , 1979 .

[8]  James E. Donahue,et al.  An Informal Description of Russell , 1980 .

[9]  F. Dick A survey of the project Automath , 1980 .

[10]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[11]  Nancy J. McCracken A finitary retract model for the polymorphic lambda-calculus , 1982 .

[12]  Robert L. Constable Partial functions in constructive formal theories , 1983, Theoretical Computer Science.

[13]  Robert L. Constable,et al.  Partial functions in constructive formal theories , 1983, Theoretical Computer Science.

[14]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[15]  Hendrik Pieter Barendregt,et al.  Semantics for Classical AUTOMATH and Related Systems , 1984, Inf. Control..

[16]  David B. MacQueen Modules for standard ML , 1984, LFP '84.

[17]  James Hook,et al.  Understanding Russell- A First Attempt , 1984, Semantics of Data Types.

[18]  Gordon D. Plotkin,et al.  An ideal model for recursive polymorphic types , 1984, Inf. Control..

[19]  Butler W. Lampson,et al.  A Kernel Language for Abstract Data Types and Modules , 1984, Semantics of Data Types.

[20]  Robert L. Constable,et al.  The Type Theory of PL/CV3 , 1984, TOPL.

[21]  Robin Milner,et al.  A proposal for standard ML , 1984, LFP '84.

[22]  Kim B. Bruce,et al.  The Semantics of Second Order Polymorphic Lambda Calculus , 1984, Semantics of Data Types.

[23]  Thierry Coquand,et al.  Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.

[24]  Luca Cardelli,et al.  On understanding types, data abstraction, and polymorphism , 1985, CSUR.

[25]  John C. Mitchell,et al.  Abstract types have existential types , 1985, POPL.

[26]  Alan J. Demers,et al.  Data types are values , 1985, ACM Trans. Program. Lang. Syst..

[27]  Albert R. Meyer,et al.  "Type" is not a type , 1986, POPL '86.

[28]  Lawrence C. Paulson,et al.  Constructing Recursion Operators in Intuitionistic Type Theory , 1986, J. Symb. Comput..

[29]  Kim B. Bruce,et al.  The Finitary Projection Model for Second Order Lambda Calculus and Solutions to Higher Order Domain Equations , 1986, LICS.

[30]  David B. MacQueen Using dependent types to express modular structure , 1986, POPL '86.

[31]  Roland Carl Backhouse,et al.  A While-Rule in Martin-Löf's Theory of Types , 1987, Comput. J..