A Polymorphic λ-calculus with Type:Type
暂无分享,去创建一个
[1] A. W. Hofmann. The Theory of Types , 1964 .
[2] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[3] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[4] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[5] Dana S. Scott,et al. Data Types as Lattices , 1976, SIAM J. Comput..
[6] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[7] Nancy Jean Mccracken,et al. An investigation of a programming language with a polymorphic type structure. , 1979 .
[8] James E. Donahue,et al. An Informal Description of Russell , 1980 .
[9] F. Dick. A survey of the project Automath , 1980 .
[10] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[11] Nancy J. McCracken. A finitary retract model for the polymorphic lambda-calculus , 1982 .
[12] Robert L. Constable. Partial functions in constructive formal theories , 1983, Theoretical Computer Science.
[13] Robert L. Constable,et al. Partial functions in constructive formal theories , 1983, Theoretical Computer Science.
[14] Daniel Leivant,et al. The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.
[15] Hendrik Pieter Barendregt,et al. Semantics for Classical AUTOMATH and Related Systems , 1984, Inf. Control..
[16] David B. MacQueen. Modules for standard ML , 1984, LFP '84.
[17] James Hook,et al. Understanding Russell- A First Attempt , 1984, Semantics of Data Types.
[18] Gordon D. Plotkin,et al. An ideal model for recursive polymorphic types , 1984, Inf. Control..
[19] Butler W. Lampson,et al. A Kernel Language for Abstract Data Types and Modules , 1984, Semantics of Data Types.
[20] Robert L. Constable,et al. The Type Theory of PL/CV3 , 1984, TOPL.
[21] Robin Milner,et al. A proposal for standard ML , 1984, LFP '84.
[22] Kim B. Bruce,et al. The Semantics of Second Order Polymorphic Lambda Calculus , 1984, Semantics of Data Types.
[23] Thierry Coquand,et al. Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.
[24] Luca Cardelli,et al. On understanding types, data abstraction, and polymorphism , 1985, CSUR.
[25] John C. Mitchell,et al. Abstract types have existential types , 1985, POPL.
[26] Alan J. Demers,et al. Data types are values , 1985, ACM Trans. Program. Lang. Syst..
[27] Albert R. Meyer,et al. "Type" is not a type , 1986, POPL '86.
[28] Lawrence C. Paulson,et al. Constructing Recursion Operators in Intuitionistic Type Theory , 1986, J. Symb. Comput..
[29] Kim B. Bruce,et al. The Finitary Projection Model for Second Order Lambda Calculus and Solutions to Higher Order Domain Equations , 1986, LICS.
[30] David B. MacQueen. Using dependent types to express modular structure , 1986, POPL '86.
[31] Roland Carl Backhouse,et al. A While-Rule in Martin-Löf's Theory of Types , 1987, Comput. J..