Preserving quantum states using inverting pulses: a super-Zeno effect.

We construct an algorithm for suppressing the transitions of a quantum mechanical system, initially prepared in a subspace P of the full Hilbert space of the system, to outside this subspace by subjecting it to a sequence of unequally spaced short-duration pulses. Each pulse multiplies the amplitude of the vectors in the subspace by -1. The number of pulses required by the algorithm to limit the leakage probability to epsilon in time increases as T exp[square root log(T(2)/epsilon)], compared to T(2)epsilon(-1) in the standard quantum Zeno effect.

[1]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[2]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[3]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[4]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[5]  Denis P. Donnelly,et al.  Symplectic integrators: An introduction , 2005 .

[6]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[7]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[8]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[9]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[10]  J. Cirac,et al.  Optimal Purification of Single Qubits , 1998, quant-ph/9812075.

[11]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[12]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[13]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[14]  G. Ghirardi,et al.  Decay theory of unstable quantum systems , 1978 .

[15]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[16]  G. Kurizki,et al.  Acceleration of quantum decay processes by frequent observations , 2000, Nature.

[17]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[18]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[19]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[20]  Roy,et al.  Quantum anti-zeno paradox , 2000, Physical review letters.

[21]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[22]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[23]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.