Inverse synthetic aperture radar imaging using complex‐value deep neural network

[1]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[2]  Marco Martorella,et al.  Compressive sensing-based inverse synthetic radar imaging imaging from incomplete data , 2016 .

[3]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[4]  Feng Wang,et al.  Simulation of ISAR imaging for a space target and reconstruction under sparse sampling via compressed sensing , 2015, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[5]  Michael Unser,et al.  Deep Convolutional Neural Network for Inverse Problems in Imaging , 2016, IEEE Transactions on Image Processing.

[6]  Otmar Loffeld,et al.  Sparse ISAR imaging using a greedy Kalman filtering approach , 2017, Signal Process..

[7]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[8]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[9]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[10]  Zhu Zhao-da ISAR MOTION COMPENSATION USING ROPE , 2004 .

[11]  Daiyin Zhu,et al.  Robust ISAR Range Alignment via Minimizing the Entropy of the Average Range Profile , 2009, IEEE Geoscience and Remote Sensing Letters.

[12]  Haipeng Wang,et al.  Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.