Faint-end quasar luminosity functions from cosmological hydrodynamic simulations

We investigate the predictions for the faint-end quasar luminosity function (QLF) and its evolution using fully cosmological hydrodynamic simulations which self-consistently follow star formation, black hole growth and associated feedback processes. We find remarkably good agreement between the predicted and observed faint end of the optical and X-ray QLFs (the bright end is not accessible in our simulated volumes) at z < 2. At higher redshifts, our simulations tend to overestimate the QLF at the faintest luminosities. We show that although the low- (high)-luminosity ranges of the faint-end QLF are dominated by low- (high)-mass black holes, a wide range of black hole masses still contributes to any given luminosity range. This is consistent with the complex light curves of black holes resulting from the detailed hydrodynamics followed in the simulations. Consistent with the results on the QLFs, we find a good agreement for the evolution of the comoving number density (in optical, soft and hard X-ray bands) of active galactic nuclei for luminosities ≥ 10 43 erg s -1 .However, the luminosity density evolution from the simulation appears to imply a peak at higher redshift than constrained from hard X-ray data (but not in optical). Our predicted excess at the faintest fluxes at z ≥ 2 does not lead to an overestimate to the total X-ray background and its contribution is at most a factor of 2 larger than the unresolved fraction of the 2-8 keV background. Even though this could be explained by some yet undetected, perhaps heavily obscured faint quasar population, we show that our predictions for the faint sources at high redshifts (which are dominated by the low-mass black holes) in the simulations are likely affected by resolution effects.

[1]  F. Hoyle,et al.  The effect of interstellar matter on climatic variation , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[3]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[4]  S. Djorgovski,et al.  The Luminosity Function of z>4 Quasars from the Second Palomar Sky Survey , 1995 .

[5]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[6]  James E. Gunn,et al.  Spectrscopic CCD Surveys for Quasars at Large Redshift.IV.Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission , 1995 .

[7]  M. J. Page,et al.  The evolution of QSOs derived from soft X-ray surveys , 1997 .

[8]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[9]  Spectral Models of Advection-dominated Accretion Flows with Winds , 1998, astro-ph/9810136.

[10]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[11]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[12]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[13]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[14]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[15]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[16]  T. Miyaji,et al.  Soft X-ray AGN Luminosity Function from ROSAT Surveys II. Table of the binned Soft X-ray Luminosity Function , 2001, astro-ph/0101279.

[17]  High-redshift quasars found in sloan digital sky survey commissioning data. IV. Luminosity function from the fall equatorial stripe sample , 2000, astro-ph/0008123.

[18]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[19]  The BeppoSAX High-Energy Large-Area Survey. V. The Nature of the Hard X-Ray Source Population and Its Evolution , 2001, astro-ph/0112455.

[20]  Star Formation-Regulated Growth of Black Holes in Protogalactic Spheroids , 2000, astro-ph/0011511.

[21]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[22]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[23]  Tony Farrell,et al.  The Anglo-Australian Observatory 2dF facility , 2002, astro-ph/0202175.

[24]  C. Steidel,et al.  The Faint End of the QSO Luminosity Function at z = 3 , 2003, astro-ph/0312041.

[25]  W. Brandt,et al.  Very High Redshift X-Ray-selected Active Galactic Nuclei in the Chandra Deep Field-North , 2003, astro-ph/0301232.

[26]  W. Brandt,et al.  The Redshift Evolution of the 2-8 keV X-Ray Luminosity Function , 2003, astro-ph/0301231.

[27]  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[28]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[29]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[30]  Quasars: the characteristic spectrum and the induced radiative heating , 2003, astro-ph/0305233.

[31]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[32]  S. Dye,et al.  The evolution of faint AGN between z ' 1 and z ' 5 from the COMBO-17 survey , 2003 .

[33]  P. Ciliegi,et al.  The HELLAS2XMM survey IV. Optical identifications and the evolution of the accretion luminosity in the Universe , 2003, astro-ph/0306556.

[34]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[35]  S.Campana,et al.  The Resolved Fraction of the Cosmic X-Ray Background , 2003, astro-ph/0301555.

[36]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[37]  R. Narayan Low-Luminosity Accretion in Black Hole X-Ray Binaries and Active Galactic Nuclei , 2004, astro-ph/0411385.

[38]  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[39]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[40]  H. Tananbaum,et al.  Hard X-Ray-emitting Active Galactic Nuclei Selected by the Chandra Multiwavelength Project , 2004 .

[41]  Silvano Molendi,et al.  The HELLAS2XMM 1dF Survey: On the Nature of High X-Ray/Optical Flux Sources , 2004 .

[42]  A. Marconi,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[43]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[44]  A. Grazian,et al.  The Space Density of High-Redshift QSOs in the Great Observatories Origins Deep Survey , 2004 .

[45]  E. Quataert,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 MODELING THE COUNTS OF FAINT RADIO LOUD QUASARS: CONSTRAINTS ON THE SUPERMASSIVE BLACK HOLE POPULATION AND PREDICTIONS FOR HIGH REDSHIFT , 2004 .

[46]  R. Narayan,et al.  On the Nature of X-Ray-Bright, Optically Normal Galaxies , 2004, astro-ph/0401117.

[47]  P. Ciliegi,et al.  The HELLAS2XMM Survey. VII. The Hard X-Ray Luminosity Function of AGNs up to z = 4: More Absorbed AGNs at Low Luminosities and High Redshifts , 2005, astro-ph/0509081.

[48]  The space density of moderate-luminosity active galaxies at z= 3 , 2005, astro-ph/0503490.

[49]  A Physical Model for the Origin of Quasar Lifetimes , 2005, astro-ph/0502241.

[50]  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[51]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[52]  P. Hopkins,et al.  Luminosity-dependent Quasar Lifetimes: A New Interpretation of the Quasar Luminosity Function , 2005, astro-ph/0504252.

[53]  K. I. Kellermann,et al.  The Parkes quarter-Jansky flat-spectrum sample - III. Space density and evolution of QSOs , 2004, astro-ph/0408122.

[54]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[55]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[56]  P. Hopkins,et al.  The Evolution in the Faint-End Slope of the Quasar Luminosity Function , 2005, astro-ph/0508299.

[57]  R. Sunyaev,et al.  Supermassive black holes in elliptical galaxies: switching from very bright to very dim , 2005 .

[58]  P. Capak,et al.  The Cosmic Evolution of Hard X-Ray-selected Active Galactic Nuclei , 2004, astro-ph/0410527.

[59]  A. Myers,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) survey: the z < 2.1 quasar luminosity function from 5645 quasars to g=21.85 , 2005, astro-ph/0504300.

[60]  M. Cirasuolo,et al.  Faint radio-loud quasars: clues to their evolution , 2005 .

[61]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[62]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[63]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[64]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[65]  Martin J. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[66]  M. Markevitch,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 ABSOLUTE MEASUREMENT OF THE UNRESOLVED COSMIC X-RAY BACKGROUND IN THE 0.5–8 KEV BAND WITH CHANDRA , 2006 .

[67]  S. Driver,et al.  A Log-Quadratic Relation for Predicting Supermassive Black Hole Masses from the Host Bulge Sérsic Index , 2006, astro-ph/0607378.

[68]  -INAF,et al.  Active galactic nuclei in the mid-IR: evolution and contribution to the cosmic infrared background , 2004, astro-ph/0601355.

[69]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[70]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[71]  Arjun Dey,et al.  The 1 < z < 5 Infrared Luminosity Function of Type I Quasars , 2005, astro-ph/0510504.

[72]  L. Moscardini,et al.  Modelling the cosmological co-evolution of supermassive black holes and galaxies – I. BH scaling relations and the AGN luminosity function , 2007, 0711.2053.

[73]  A Theoretical Interpretation of the Black Hole Fundamental Plane , 2007, astro-ph/0701351.

[74]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[75]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[76]  J. Ostriker,et al.  Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas , 2007, astro-ph/0703057.

[77]  H. Tananbaum,et al.  The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.

[78]  D. Shupe,et al.  High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function , 2007, 0711.0211.

[79]  Black hole growth in hierarchical galaxy formation , 2006, astro-ph/0607424.

[80]  P. J. Wheatley,et al.  The XMM-Newton serendipitous survey - IV. Optical identification of the XMM-Newton medium sensitivity survey (XMS) , 2007, 0710.0402.

[81]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. II. Scaling Relations at z = 0.36 , 2007, 0706.0519.

[82]  Ufrgs,et al.  The impact of radio feedback from active galactic nuclei in cosmological simulations: formation of disc galaxies , 2007, 0704.1218.

[83]  T. D. Matteo,et al.  Direct Cosmological Simulations of the Growth of Black Holes and Galaxies , 2007, 0705.2269.

[84]  L. Trouille,et al.  THE OPTX PROJECT. II. HARD X-RAY LUMINOSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEI FOR z ≲ 5 , 2009, 0903.4183.