Parallel Newton-Krylov-BDDC and FETI-DP deluxe solvers for implicit time discretizations of the cardiac Bidomain equations

Two novel parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are here constructed, analyzed and tested numerically for implicit time discretizations of the three-dimensional Bidomain system of equations. This model represents the most advanced mathematical description of the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A finite element discretization in space and a segregated implicit discretization in time, based on decoupling the PDEs from the ODEs, yields at each time step the solution of a non-linear algebraic system. The Jacobian linear system at each Newton iteration is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. A polylogarithmic convergence rate bound is proven for the resulting parallel Bidomain solvers. Extensive numerical experiments on linux clusters up to two thousands processors confirm the theoretical estimates, showing that the proposed parallel solvers are scalable and quasi-optimal.

[1]  Stefano Zampini,et al.  Newton–Krylov-BDDC solvers for nonlinear cardiac mechanics , 2015 .

[2]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[3]  Oliver Rheinbach,et al.  Parallel scalable iterative substructuring: Robust exact and inexact FETI-DP methods with applications to elasticity , 2007 .

[4]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[5]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[6]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[7]  Yan Wang,et al.  A two-parameter modified splitting preconditioner for the Bidomain equations , 2019, Calcolo.

[8]  Alfio Quarteroni,et al.  The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications * , 2017, Acta Numerica.

[9]  Alfio Quarteroni,et al.  Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function , 2017 .

[10]  Xiao-Chuan Cai,et al.  A fully implicit parallel algorithm for simulating the non‐linear electrical activity of the heart , 2004, Numer. Linear Algebra Appl..

[11]  Luca F. Pavarino,et al.  DECOUPLED SCHWARZ ALGORITHMS FOR IMPLICIT DISCRETIZATIONS OF NONLINEAR MONODOMAIN AND BIDOMAIN SYSTEMS , 2009 .

[12]  Stefano Zampini,et al.  DUAL-PRIMAL METHODS FOR THE CARDIAC BIDOMAIN MODEL , 2014 .

[13]  Xiaolin Li,et al.  A splitting preconditioner for a block two-by-two linear system with applications to the bidomain equations , 2017, J. Comput. Appl. Math..

[14]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[15]  A. McCulloch,et al.  A collocation-Galerkin finite element model of cardiac action potential propagation , 1994, IEEE Transactions on Biomedical Engineering.

[16]  Piero Colli Franzone,et al.  Multiscale Modeling for the Bioelectric Activity of the Heart , 2005, SIAM J. Math. Anal..

[17]  Simone Scacchi,et al.  A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures , 2018, Front. Physiol..

[18]  A. Klawonn,et al.  Highly scalable parallel domain decomposition methods with an application to biomechanics , 2010 .

[19]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[20]  Olaf Steinbach,et al.  Classical and all‐floating FETI methods for the simulation of arterial tissues , 2014, International journal for numerical methods in engineering.

[21]  Simone Scacchi,et al.  A multilevel hybrid Newton–Krylov–Schwarz method for the Bidomain model of electrocardiology , 2011 .

[22]  Luca F. Pavarino,et al.  Mathematical cardiac electrophysiology/ Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi , 2014 .

[23]  Stefano Zampini Inexact BDDC Methods for the Cardiac Bidomain Model , 2014 .

[24]  Olof B. Widlund,et al.  Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..

[25]  Luca F. Pavarino,et al.  A Scalable Newton--Krylov--Schwarz Method for the Bidomain Reaction-Diffusion System , 2009, SIAM J. Sci. Comput..

[26]  D. Noble,et al.  A model for human ventricular tissue. , 2004, American journal of physiology. Heart and circulatory physiology.

[27]  Simone Scacchi,et al.  Parallel multilevel solvers for the cardiac electro-mechanical coupling , 2015 .

[28]  Giuseppe Savaré,et al.  Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level , 2002 .

[29]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[30]  Olof B. Widlund,et al.  A BDDC Algorithm with Deluxe Scaling for Three‐Dimensional H(curl) Problems , 2016 .

[31]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[32]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[33]  A. Klawonn,et al.  Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy , 2008, Computer methods in biomechanics and biomedical engineering.