Gene-set approach for expression pattern analysis

Recently developed gene set analysis methods evaluate differential expression patterns of gene groups instead of those of individual genes. This approach especially targets gene groups whose constituents show subtle but coordinated expression changes, which might not be detected by the usual individual gene analysis.The approach has been quite successful in deriving new information from expression data, and a number of methods and tools have been developed intensively in recent years.We review those methods and currently available tools, classify them according to the statistical methods employed, and discuss their pros and cons. We also discuss several interesting extensions to the methods.

[1]  Hinrich W. H. Göhlmann,et al.  The high-level similarity of some disparate gene expression measures , 2007, Bioinform..

[2]  Zhen Jiang,et al.  Bioconductor Project Bioconductor Project Working Papers Year Paper Extensions to Gene Set Enrichment , 2013 .

[3]  Jelle J. Goeman,et al.  Testing association of a pathway with survival using gene expression data , 2005, Bioinform..

[4]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[5]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[6]  H. Dressman,et al.  Genomic signatures to guide the use of chemotherapeutics , 2006 .

[7]  Christina Backes,et al.  GeneTrail—advanced gene set enrichment analysis , 2007, Nucleic Acids Res..

[8]  Joaquín Dopazo,et al.  BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments , 2006, Nucleic Acids Res..

[9]  Andrew B. Nobel,et al.  Significance analysis of functional categories in gene expression studies: a structured permutation approach , 2005, Bioinform..

[10]  Léon Personnaz,et al.  Enrichment or depletion of a GO category within a class of genes: which test? , 2007, Bioinform..

[11]  Jiajun Liu,et al.  Domain-enhanced analysis of microarray data using GO annotations , 2007, Bioinform..

[12]  Sang-Bae Kim,et al.  GAzer: gene set analyzer , 2007, Bioinform..

[13]  Taewon Lee,et al.  A method for computing the overall statistical significance of a treatment effect among a group of genes , 2006, BMC Bioinformatics.

[14]  Seon-Young Kim,et al.  Gene-set approach for expression pattern analysis , 2008, Briefings Bioinform..

[15]  Daniel J. Vis,et al.  T-profiler: scoring the activity of predefined groups of genes using gene expression data , 2005, Nucleic Acids Res..

[16]  Jun Lu,et al.  Pathway level analysis of gene expression using singular value decomposition , 2005, BMC Bioinformatics.

[17]  M. Newton,et al.  Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis , 2007, 0708.4350.

[18]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[19]  Paolo Gasparini,et al.  GOAL: automated Gene Ontology analysis of expression profiles , 2004, Nucleic Acids Res..

[20]  Paul Pavlidis,et al.  ErmineJ: Tool for functional analysis of gene expression data sets , 2005, BMC Bioinformatics.

[21]  K. Becker,et al.  A rapid method for microarray cross platform comparisons using gene expression signatures. , 2007, Molecular and cellular probes.

[22]  I. Kohane,et al.  Absolute enrichment: gene set enrichment analysis for homeostatic systems , 2006, Nucleic acids research.

[23]  P. Park,et al.  Discovering statistically significant pathways in expression profiling studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Qi Liu,et al.  Improving gene set analysis of microarray data by SAM-GS , 2007, BMC Bioinformatics.

[25]  Lambert C. J. Dorssers,et al.  GO-Mapper: functional analysis of gene expression data using the expression level as a score to evaluate Gene Ontology terms , 2004, Bioinform..

[26]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[27]  Frank Klawonn,et al.  JProGO: a novel tool for the functional interpretation of prokaryotic microarray data using Gene Ontology information , 2006, Nucleic Acids Res..

[28]  Simona Toti,et al.  Eu.Gene Analyzer a tool for integrating gene expression data with pathway databases , 2007, Bioinform..

[29]  Sayan Mukherjee,et al.  Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles , 2006, ISMB.

[30]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[31]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[32]  Peter Bühlmann,et al.  Analyzing gene expression data in terms of gene sets: methodological issues , 2007, Bioinform..

[33]  Eleazar Eskin,et al.  Discovering tightly regulated and differentially expressed gene sets in whole genome expression data , 2007, Bioinform..

[34]  Roland Eils,et al.  Group testing for pathway analysis improves comparability of different microarray datasets , 2006, Bioinform..

[35]  Patrik Edén,et al.  Comparing Functional Annotation Analyses with Catmap Comparing Functional Annotation Analyses with Catmap , 2004 .

[36]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[37]  D. Damian,et al.  Statistical concerns about the GSEA procedure , 2004, Nature Genetics.

[38]  Peter J. Park,et al.  A multivariate approach for integrating genome-wide expression data and biological knowledge , 2006, Bioinform..

[39]  Hagai Bergman,et al.  Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression , 2005, Bioinform..

[40]  Mingzhu Zhu,et al.  MEGO: gene functional module expression based on gene ontology. , 2005, BioTechniques.

[41]  M. Caligiuri,et al.  Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Sang-Bae Kim,et al.  ADGO: analysis of differentially expressed gene sets using composite GO annotation , 2006, Bioinform..

[43]  Stanley N Cohen,et al.  Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  William Stafford Noble,et al.  Exploring Gene Expression Data with Class Scores , 2001, Pacific Symposium on Biocomputing.

[46]  J. Dopazo Functional interpretation of microarray experiments. , 2006, Omics : a journal of integrative biology.