Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells

[1]  Jia Zhu,et al.  Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20% , 2020 .

[2]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[3]  Jay B. Patel,et al.  Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices , 2020, Advanced Energy Materials.

[4]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[5]  Mee-Yi Ryu,et al.  Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots , 2019, Scientific Reports.

[6]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[7]  Sean P. Dunfield,et al.  Enabling Flexible All-Perovskite Tandem Solar Cells , 2019, Joule.

[8]  Zhen He,et al.  Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer , 2019, Organic Electronics.

[9]  Zhaolai Chen,et al.  Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency , 2019, ACS Energy Letters.

[10]  L. Herz,et al.  How β-Phase Content Moderates Chain Conjugation and Energy Transfer in Polyfluorene Films. , 2019, The journal of physical chemistry letters.

[11]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[12]  G. Brocks,et al.  Absolute energy level positions in tin- and lead-based halide perovskites , 2019, Nature Communications.

[13]  Jeffrey A. Christians,et al.  Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability , 2019, Chemical science.

[14]  L. A. Ribeiro Júnior,et al.  Inferring changes in π-stack mobility induced by aging from vibronic transitions in poly(3-hexylthiophene-2,5-diyl) films , 2019, Synthetic Metals.

[15]  Tongle Bu,et al.  Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer , 2018 .

[16]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[17]  Michael Saliba,et al.  Perowskit‐Solarzellen: atomare Ebene, Schichtqualität und Leistungsfähigkeit der Zellen , 2018 .

[18]  V. Nádaždy,et al.  Effect of substrate roughness on photoluminescence of poly(3-hexylthiophene) , 2018 .

[19]  R. Hildner,et al.  π‐Conjugated Donor Polymers: Structure Formation and Morphology in Solution, Bulk and Photovoltaic Blends , 2017 .

[20]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[21]  S. Höfling,et al.  Influence of optical material properties on strong coupling in organic semiconductor based microcavities , 2017 .

[22]  Jinsong Huang,et al.  The Functions of Fullerenes in Hybrid Perovskite Solar Cells , 2017 .

[23]  Jay B. Patel,et al.  Influence of Interface Morphology on Hysteresis in Vapor‐Deposited Perovskite Solar Cells , 2017 .

[24]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[25]  Thomas Kirchartz,et al.  Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells , 2016 .

[26]  L. Schmidt‐Mende,et al.  H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy , 2016, Scientific Reports.

[27]  J. Bünzli,et al.  Guidelines for measurement of luminescence spectra and quantum yields of inorganic and organometallic compounds in solution and solid state (IUPAC Technical Report) , 2016 .

[28]  M. Green,et al.  Optical analysis of perovskite/silicon tandem solar cells , 2016 .

[29]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[30]  B. Rech,et al.  Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells , 2016 .

[31]  Youngsuk Jung,et al.  High-Efficiency Polymer LEDs with Fast Response Times Fabricated via Selection of Electron-Injecting Conjugated Polyelectrolyte Backbone Structure. , 2015, ACS applied materials & interfaces.

[32]  H. Snaith,et al.  Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors , 2015, 1511.06507.

[33]  T. Edvinsson,et al.  Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance , 2015 .

[34]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[35]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[36]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[37]  L. Herz,et al.  Structure-Directed Exciton Dynamics in Templated Molecular Nanorings , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[38]  Wei Zhang,et al.  Optical properties and limiting photocurrent of thin-film perovskite solar cells , 2015 .

[39]  Michael P. Shaver,et al.  Intrinsic high refractive index polymers , 2015 .

[40]  T. Senden,et al.  Photonic effects on the Förster resonance energy transfer efficiency , 2014, Nature Communications.

[41]  D. Bradley,et al.  Advanced Ellipsometric Characterization of Conjugated Polymer Films , 2014 .

[42]  Carlos Silva,et al.  H- and J-aggregate behavior in polymeric semiconductors. , 2014, Annual review of physical chemistry.

[43]  E. Namdas,et al.  ITO‐free top emitting organic light emitting diodes with enhanced light out‐coupling , 2014 .

[44]  Martin Baumgarten,et al.  Designing pi-conjugated polymers for organic electronics , 2013 .

[45]  Igor L. Medintz,et al.  FRET – Förster Resonance Energy Transfer , 2013 .

[46]  Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: Effect of molecular weight , 2013, 1306.1805.

[47]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[48]  F. Spano,et al.  Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model. , 2012, The Journal of chemical physics.

[49]  Adam J. Moulé,et al.  J-Aggregate Behavior in Poly-3-hexylthiophene Nanofibers , 2012 .

[50]  M. Stutzmann,et al.  Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in real time by near-infrared broadband transient absorption. , 2011, Journal of the American Chemical Society.

[51]  Lee J. Richter,et al.  Anisotropic Structure and Charge Transport in Highly Strain‐Aligned Regioregular Poly(3‐hexylthiophene) , 2011 .

[52]  Martin Brinkmann,et al.  Structure and morphology control in thin films of regioregular poly(3‐hexylthiophene) , 2011 .

[53]  D. Bradley,et al.  Effect of Crystallization on the Electronic Energy Levels and Thin Film Morphology of P3HT:PCBM Blends , 2011 .

[54]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[55]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[56]  Jenny Clark,et al.  Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy , 2009, 0903.1670.

[57]  Henk J. Bolink,et al.  Efficient Polymer Light‐Emitting Diode Using Air‐Stable Metal Oxides as Electrodes , 2009 .

[58]  B. Valeur,et al.  Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[59]  U. Pietsch,et al.  Thickness Dependence of the Crystalline Structure and Hole Mobility in Thin Films of Low Molecular Weight Poly(3-hexylthiophene) , 2008 .

[60]  Akihiro Furube,et al.  Analysis of the excited states of regioregular polythiophene P3HT , 2008 .

[61]  J. Martinho,et al.  Resonance Energy Transfer in Polymer Nanodomains , 2008 .

[62]  M. Turner,et al.  Nanoparticle-polymer photovoltaic cells. , 2008, Advances in colloid and interface science.

[63]  Henk J. Bolink,et al.  Inverted solution processable OLEDs using a metal oxide as electron injection contact , 2008, SPIE Photonics Europe.

[64]  Jenny Clark,et al.  Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. , 2007, Physical review letters.

[65]  J. Martinho,et al.  Resonance Energy Transfer in Polymer Interfaces , 2007 .

[66]  R. J. Kline,et al.  Morphology and Charge Transport in Conjugated Polymers , 2006 .

[67]  F. Spano,et al.  Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. , 2005, The Journal of chemical physics.

[68]  A. Monkman,et al.  The role of exciton diffusion in energy transfer between polyfluorene and tetraphenyl porphyrin , 2005 .

[69]  K. Sanui,et al.  Coexistence of photoluminescence from two intrachain states in polythiophene films , 2003 .

[70]  J. Kampf,et al.  Intermolecular interactions in pi-stacked conjugated molecules. Synthesis, structure, and spectral characterization of alkyl bithiazole oligomers. , 2003, Journal of the American Chemical Society.

[71]  H. Sirringhaus,et al.  Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) , 2003 .

[72]  Ronald Österbacka,et al.  Spectroscopic Studies of Photoexcitations in Regioregular and Regiorandom Polythiophene Films , 2002 .

[73]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[74]  Ullrich Scherf,et al.  Charge carrier transport in conjugated polymers , 1999 .

[75]  Y. Tokura,et al.  Experimental determination of excitonic structure in polythiophene , 1997 .

[76]  Alan J. Heeger,et al.  The exciton binding energy in luminescent conjugated polymers , 1996 .

[77]  J. Duhamel,et al.  Dipole-dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors: systems with planar geometry , 1995 .

[78]  M. Fayer,et al.  Excitation transfer in disordered two‐dimensional and anisotropic three‐dimensional systems: Effects of spatial geometry on time‐resolved observables , 1986 .

[79]  J. Klafter,et al.  Fractal behavior in trapping and reaction , 1984 .

[80]  L. Stryer,et al.  Diffusion-enhanced fluorescence energy transfer. , 1982, Annual review of biophysics and bioengineering.

[81]  A. Blumen,et al.  On the concentration and time dependence of the energy transfer to randomly distributed acceptors , 1979 .

[82]  P. Wolber,et al.  An analytic solution to the Förster energy transfer problem in two dimensions. , 1979, Biophysical journal.

[83]  Douglas S. Hamilton,et al.  Time-dependent effects in fluorescent line narrowing , 1977 .

[84]  U. Gösele,et al.  Extension of Förster's Theory of Long-Range Energy Transfer to Donor-Acceptor Pairs in Systems of Molecular Dimensions , 1976 .

[85]  M. Z. Maksimov,et al.  On Energy Transfer in Solid Solutions , 1962 .

[86]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[87]  Th. Förster,et al.  Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie , 1949 .

[88]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[89]  Th. Förster Energiewanderung und Fluoreszenz , 1946 .