Nonparametric multiple comparison procedures for unbalanced two-way layouts

In this paper, we consider nonparametric multiple comparison procedures for unbalanced two-way factorial designs under a pure nonparametric framework. For multiple comparisons of treatments versus a control concerning the main effects or the simple factor effects, the limiting distribution of the associated rank statistics is proven to satisfy the multivariate totally positive of order two condition. Hence, asymptotically the proposed Hochberg procedure strongly controls the familywise type I error rate for the simultaneous testing of the individual hypotheses. In addition, we propose to employ Shaffer's modified version of Holm's stepdown procedure to perform simultaneous tests on all pairwise comparisons regarding the main or simple factor effects and to perform simultaneous tests on all interaction effects. The logical constraints in the corresponding hypothesis families are utilized to sharpen the rejective thresholds and improve the power of the tests.

[1]  K. Gabriel,et al.  SIMULTANEOUS TEST PROCEDURES-SOME THEORY OF MULTIPLE COMPARISONS' , 1969 .

[2]  G. Hommel A comparison of two modified Bonferroni procedures , 1989 .

[3]  J. Shaffer Modified Sequentially Rejective Multiple Test Procedures , 1986 .

[4]  G. Hommel A stagewise rejective multiple test procedure based on a modified Bonferroni test , 1988 .

[5]  Edgar Brunner,et al.  Nonparametric Methods for Stratified Two-Sample Designs with Application to Multiclinic Trials , 1995 .

[6]  L. Hothorn,et al.  A Unified Approach to Simultaneous Rank Test Procedures in the Unbalanced One-way Layout , 2001 .

[7]  Larry P. Ammann,et al.  Efficacies of Rank-Transform Statistics in Two-Way Models with No Interaction , 1989 .

[8]  Edgar Brunner,et al.  Nonparametric methods in factorial designs , 2001 .

[9]  Thomas P. Hettmansperger,et al.  A robust analysis of the general linear model based on one step R-estimates , 1978 .

[10]  Joseph W. McKean,et al.  Rank-Based Analysis of Linear Models Using R , 2005 .

[11]  S. Sarkar Some Results on False Discovery Rate in Stepwise multiple testing procedures , 2002 .

[12]  Michael G. Akritas,et al.  The Rank Transform Method in Some Two-Factor Designs , 1990 .

[13]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[14]  Yosef Hochberg,et al.  Extensions of multiple testing procedures based on Simes' test , 1995 .

[15]  R. Simes,et al.  An improved Bonferroni procedure for multiple tests of significance , 1986 .

[16]  Peter H. Westfall,et al.  Multiple Testing of General Contrasts Using Logical Constraints and Correlations , 1997 .

[17]  Edgar Brunner,et al.  19 Nonparametric methods in design and analysis of experiments , 1996, Design and analysis of experiments.

[18]  Michael G. Akritas,et al.  Fully Nonparametric Hypotheses for Factorial Designs I: Multivariate Repeated Measures Designs , 1994 .

[19]  Gang Li,et al.  Nonparametric multiple comparison procedures for unbalanced one-way factorial designs , 2008 .

[20]  T. Hettmansperger,et al.  Robust Nonparametric Statistical Methods , 1998 .

[21]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[22]  Z. Šidák Rectangular Confidence Regions for the Means of Multivariate Normal Distributions , 1967 .

[23]  Edgar Brunner,et al.  A class of rank-score tests in factorial designs , 2002 .

[24]  J. Voshaar,et al.  $(k - 1)$-Mean Significance Levels of Nonparametric Multiple Comparisons Procedures , 1980 .

[25]  G. L. Thompson A Unified Approach to Rank Tests for Multivariate and Repeated Measures Designs , 1991 .

[26]  Edgar Brunner,et al.  Nonparametric Hypotheses and Rank Statistics for Unbalanced Factorial Designs , 1997 .

[27]  Holger Dette,et al.  Box-Type Approximations in Nonparametric Factorial Designs , 1997 .

[28]  Mayer Alvo,et al.  A Unified Nonparametric Approach for Unbalanced Factorial Designs , 2005 .

[29]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[30]  S. Karlin,et al.  Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions , 1980 .

[31]  Ronald L. Iman,et al.  Asymptotic Relative Efficiencies of the Rank-Transformation Procedure in Randomized Complete Block Designs , 1988 .

[32]  S. Domhof Nichtparametrische relative Effekte , 2001 .

[33]  Ester Samuel-Cahn,et al.  Is the Simes improved Bonferroni procedure conservative , 1996 .

[34]  P. Sen A Generalization of the T-Method of Multiple Comparisons for Interactions , 1969 .

[35]  S. Sarkar Some probability inequalities for ordered $\rm MTP\sb 2$ random variables: a proof of the Simes conjecture , 1998 .

[36]  Frits H. Ruymgaart,et al.  A unified approach to the asymptotic distribution theory of certain midrank statistics , 1980 .

[37]  Edgar Brunner,et al.  Rank-Score Tests in Factorial Designs with Repeated Measures , 1999 .

[38]  S. Sarkar,et al.  The Simes Method for Multiple Hypothesis Testing with Positively Dependent Test Statistics , 1997 .

[39]  John R. Donoghue,et al.  IMPLEMENTING SHAFFER'S MULTIPLE COMPARISON PROCEDURE FOR LARGE NUMBERS OF GROUPS , 1998 .

[40]  A. Genz,et al.  Numerical computation of multivariate t-probabilities with application to power calculation of multiple contrasts , 1999 .

[41]  Edgar Brunner,et al.  A unified approach to rank tests for mixed models , 1997 .

[42]  G. A. Mack,et al.  A Friedman-Type Rank Test for Main Effects in a Two-Factor ANOVA , 1980 .

[43]  U. Munzel,et al.  Linear rank score statistics when ties are present , 1999 .

[44]  Edgar Brunner,et al.  RANK TESTS IN 2X2 DESIGNS , 1986 .

[45]  A. Tamhane,et al.  Multiple Comparison Procedures , 1989 .