A meshless method for solving the time fractional advection-diffusion equation with variable coefficients

Abstract In this paper, an efficient and accurate meshless method is proposed for solving the time fractional advection–diffusion equation with variable coefficients which is based on the moving least square (MLS) approximation. In the proposed method, firstly the time fractional derivative is approximated by a finite difference scheme of order O ( ( δ t ) 2 − α ) , 0 α ≤ 1 and then the MLS approach is employed to approximate the spatial derivative where time fractional derivative is expressed in the Caputo sense. Also, the validity of the proposed method is investigated in error analysis discussion. The main aim is to show that the meshless method based on the MLS shape functions is highly appropriate for solving fractional partial differential equations (FPDEs) with variable coefficients. The efficiency and accuracy of the proposed method are verified by solving several examples.

[1]  D. H. McLain,et al.  Two Dimensional Interpolation from Random Data , 1976, Comput. J..

[2]  M. H. Aliabadi,et al.  A hybrid finite difference and moving least square method for elasticity problems , 2012 .

[3]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[4]  Baiyu Wang A local meshless method based on moving least squares and local radial basis functions , 2015 .

[5]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[6]  Ming Li Fractal Time Series—A Tutorial Review , 2010 .

[7]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[8]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[9]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[10]  C. Zuppa Good quality point sets and error estimates for moving least square approximations , 2003 .

[11]  Mohammad Reza Hooshmandasl,et al.  Moving Least Squares (MLS) Method for the Nonlinear Hyperbolic Telegraph Equation with Variable Coefficients , 2017 .

[12]  YuanTong Gu,et al.  Boundary meshfree methods based on the boundary point interpolation methods , 2002 .

[13]  Carlos Zuppa,et al.  Error estimates for moving least square approximations , 2003 .

[14]  Shaher Momani,et al.  The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics , 2009, Comput. Math. Appl..

[15]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[16]  Ricardo G. Durán,et al.  Error estimates for moving least square approximations , 2001 .

[17]  M. S. Matbuly,et al.  Analysis of composite plates using moving least squares differential quadrature method , 2014, Appl. Math. Comput..

[18]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[19]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[20]  Mehdi Dehghan,et al.  An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations , 2015 .

[21]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[22]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[23]  Hai-Wei Sun,et al.  Three-point combined compact difference schemes for time-fractional advection-diffusion equations with smooth solutions , 2015, J. Comput. Phys..

[24]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[25]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[26]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[27]  Jae Hyuk Lim,et al.  MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement , 2007 .

[28]  S. Haq,et al.  RBFs approximation method for time fractional partial differential equations , 2011 .

[29]  YuanTong Gu,et al.  AN ADVANCED MESHLESS METHOD FOR TIME FRACTIONAL DIFFUSION EQUATION , 2011 .

[30]  Prasad K. Yarlagadda,et al.  Time‐dependent fractional advection–diffusion equations by an implicit MLS meshless method , 2011 .

[31]  M. H. Heydari,et al.  A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation , 2017, J. Comput. Phys..

[32]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[33]  M. R. Hooshmandasl,et al.  Wavelets method for the time fractional diffusion-wave equation , 2015 .

[34]  Mohammad Hossein Heydari,et al.  Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions , 2014, Appl. Math. Comput..

[35]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[36]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[37]  K. M. Liew,et al.  Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method , 2003 .

[38]  M. G. Armentano,et al.  Error Estimates in Sobolev Spaces for Moving Least Square Approximations , 2001, SIAM J. Numer. Anal..

[39]  Mehdi Dehghan,et al.  The numerical solution of the non-linear integro-differential equations based on the meshless method , 2012, J. Comput. Appl. Math..

[40]  Shyam L. Kalla,et al.  Numerical treatment of fractional heat equations , 2008 .

[41]  Gang Li,et al.  Meshless Methods for Numerical Solution of Partial Differential Equations , 2005 .

[42]  Wang Daobin,et al.  Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method , 2007 .

[43]  Mohammad Reza Hooshmandasl,et al.  Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions , 2013 .

[44]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[45]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[46]  Ming Li,et al.  Generalized Cauchy model of sea level fluctuations with long-range dependence , 2017 .

[47]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..