Towards artificial muscles at the nanometric level.

The authors describe their study of molecular systems suited to the fabrication of machines and (rotory or linear) motors at the molecular level. They indicate that a future application of these molecular'muscles'could be in the area of information storage and processing.

[1]  Richard A. Silva,et al.  A Rationally Designed Prototype of a Molecular Motor. , 2000, Journal of the American Chemical Society.

[2]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[3]  George Oster,et al.  Energy transduction in ATP synthase , 1998, Nature.

[4]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[5]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[6]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[7]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[8]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[9]  John E. Walker,et al.  ATP‐Synthese durch Rotations‐Katalyse (Nobel‐Vortrag) , 1998 .

[10]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[11]  K Namba,et al.  Molecular architecture of bacterial flagellum , 1997, Quarterly Reviews of Biophysics.

[12]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[13]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[14]  Ian W. Hunter,et al.  Encapsulated polypyrrole actuators , 1999 .

[15]  Young-A Lee,et al.  Smart Molecular Helical Springs as Tunable Receptors , 2000 .

[16]  R. J. Reid,et al.  Toward Molecular Muscles: Design and Synthesis of an Electrically Conducting Poly[cyclooctatetrathiophene] , 1999 .

[17]  Ben L. Feringa,et al.  Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Center , 2000 .

[18]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[19]  T F Otero,et al.  Soft and wet conducting polymers for artificial muscles. , 1998, Advanced materials.

[20]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[21]  E. Sablin,et al.  Kinesins and microtubules: their structures and motor mechanisms. , 2000, Current opinion in cell biology.

[22]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[23]  R. J. Reid,et al.  Tetra[2,3-thienylene]: a building block for single-molecule electromechanical actuators. , 2002, Journal of the American Chemical Society.