Convergence analysis of particle swarm optimization using stochastic Lyapunov functions and quantifier elimination

This paper adds to the discussion about theoretical aspects of particle swarm stability by proposing to employ stochastic Lyapunov functions and to determine the convergence set by quantifier elimination. We present a computational procedure and show that this approach leads to reevaluation and extension of previously know stability regions for PSO using a Lyapunov approach under stagnation assumptions.

[1]  Hirokazu Anai,et al.  An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination , 2009, SNC '09.

[2]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[3]  Changbo Chen,et al.  Quantifier elimination by cylindrical algebraic decomposition based on regular chains , 2014, J. Symb. Comput..

[4]  Klaus Röbenack,et al.  Automatic Generation of Bounds for Polynomial Systems with Application to the Lorenz System , 2017, Chaos, Solitons & Fractals.

[5]  Qinghai Bai,et al.  Analysis of Particle Swarm Optimization Algorithm , 2010, Comput. Inf. Sci..

[6]  Hirokazu Anai,et al.  The Maple package SyNRAC and its application to robust control design , 2007, Future Gener. Comput. Syst..

[7]  Andries Petrus Engelbrecht,et al.  Particle swarm convergence: An empirical investigation , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[8]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[9]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[10]  Wen Yong Dong,et al.  Order-3 stability analysis of particle swarm optimization , 2019, Inf. Sci..

[11]  Amreen Khan,et al.  An Analysis of Particle Swarm Optimization with Data Clustering-Technique for Optimization in Data Mining. , 2010 .

[12]  Hirokazu Anai,et al.  SyNRAC: A Maple-Package for Solving Real Algebraic Constraints , 2003, International Conference on Computational Science.

[13]  Mikhail A. Semenov,et al.  Analysis of Convergence of an Evolutionary Algorithm with Self-Adaptation using a Stochastic Lyapunov function , 2003, Evolutionary Computation.

[14]  B. Øksendal Stochastic Differential Equations , 1985 .

[15]  Vasile Dragan,et al.  Mean Square Exponential Stability for some Stochastic Linear Discrete Time Systems , 2006, Eur. J. Control.

[16]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[17]  Zbigniew Michalewicz,et al.  Stability Analysis of the Particle Swarm Optimization Without Stagnation Assumption , 2016, IEEE Transactions on Evolutionary Computation.

[18]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[19]  Elizabeth F. Wanner,et al.  Lyapunov Design of a Simple Step-Size Adaptation Strategy Based on Success , 2016, PPSN.

[20]  X. Chen,et al.  Discrete-time Indefinite LQ Control with State and Control Dependent Noises , 2002, J. Glob. Optim..

[21]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[22]  Qunfeng Liu,et al.  Order-2 Stability Analysis of Particle Swarm Optimization , 2015, Evolutionary Computation.

[23]  Volker Weispfenning,et al.  Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.

[24]  Andries Petrus Engelbrecht,et al.  Particle swarm variants: standardized convergence analysis , 2015, Swarm Intelligence.

[25]  Veysel Gazi,et al.  Stochastic stability analysis of the particle dynamics in the PSO algorithm , 2012, 2012 IEEE International Symposium on Intelligent Control.

[26]  Lu Yang,et al.  A complete discrimination system for polynomials , 1996 .

[27]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[28]  D. Broomhead,et al.  Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation , 2007, GECCO '07.

[29]  Xuerong Mao,et al.  Stability of stochastic delay neural networks , 2001, J. Frankl. Inst..

[30]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[31]  Huanshui Zhang,et al.  Infinite horizon linear quadratic optimal control for discrete‐time stochastic systems , 2008 .

[32]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[33]  K. Swamy,et al.  On Sylvester's criterion for positive-semidefinite matrices , 1973 .

[34]  Christopher Wesley Cleghorn,et al.  Particle Swarm Optimization: Understanding Order-2 Stability Guarantees , 2019, EvoApplications.

[35]  Andries Petrus Engelbrecht,et al.  Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption , 2018, Swarm Intelligence.

[36]  Zbigniew Michalewicz,et al.  Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review , 2017, Evolutionary Computation.

[37]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition--preliminary report , 1974, SIGS.

[38]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[39]  Weihai Zhang,et al.  Stability of Nonlinear Stochastic Discrete-Time Systems , 2013, J. Appl. Math..

[40]  K. Röbenack,et al.  Calculating Positive Invariant Sets: A Quantifier Elimination Approach , 2019, Journal of Computational and Nonlinear Dynamics.

[41]  Beatrice Paternoster,et al.  About stability of nonlinear stochastic difference equations , 2000, Appl. Math. Lett..

[42]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[43]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[44]  Changbo Chen,et al.  Real Quantifier Elimination in the RegularChains Library , 2014, ICMS.

[45]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[46]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[47]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[49]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[50]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..