Output error estimation for summation-by-parts finite-difference schemes

The paper develops a posteriori error estimates of integral output functionals for summation-by-parts finite-difference methods. The error estimates are based on the adjoint-weighted residual method and take advantage of a variational interpretation of summation-by-parts discretizations. The estimates are computed on a fixed grid and do not require an embedded grid or explicit interpolation operators. For smooth boundary-value problems containing first and second derivatives the error estimates converge to the exact error as the mesh is refined. The theory is verified using linear boundary-value problems and the Euler equations.

[1]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[2]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[3]  Timothy J. Baker,et al.  Mesh generation: Art or science? , 2005 .

[4]  Mark H. Carpenter,et al.  Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods , 2009, SIAM J. Sci. Comput..

[5]  Manuel Tiglio,et al.  Orbiting binary black hole evolutions with a multipatch high order finite-difference approach , 2009, 0904.0493.

[6]  Ramji Kamakoti,et al.  High-Order Narrow Stencil Finite-Difference Approximations of Second-Order Derivatives Involving Variable Coefficients , 2009, SIAM J. Sci. Comput..

[7]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[8]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[9]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[10]  Michael B. Giles,et al.  Adjoint and defect error bounding and correction for functional estimates , 2003 .

[11]  Philip L. Roe,et al.  An Entropy Adjoint Approach to Mesh Refinement , 2010, SIAM J. Sci. Comput..

[12]  T. Pulliam,et al.  Adjoint Formulation for an Embedded-Boundary Cartesian Method , 2005 .

[13]  James Lu,et al.  An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .

[14]  E. Nielsen,et al.  Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables , 2005 .

[15]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[16]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[17]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[18]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[19]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[20]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[21]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[22]  Jason E. Hicken,et al.  Parallel Newton-Krylov Solver for the Euler Equations Discretized Using Simultaneous-Approximation Terms , 2008 .

[23]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[24]  T. Barth,et al.  An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .

[25]  Jason E. Hicken,et al.  A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..

[26]  David W. Zingg,et al.  A parallel Newton-Krylov-Schur flow solver for the Navier-Stokes equations using the SBP-SAT approach , 2010 .

[27]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[28]  Michael J. Aftosmis,et al.  Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .

[29]  Jason E. Hicken,et al.  The Role of Dual Consistency in Functional Accuracy: Error Estimation and Superconvergence , 2011 .

[30]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[31]  John C. Vassberg,et al.  In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .

[32]  D. Gottlieb,et al.  A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .

[33]  D. Darmofal,et al.  An implicit, exact dual adjoint solution method for turbulent flows on unstructured grids , 2004 .

[34]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[35]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[36]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[37]  W. K. Anderson,et al.  Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .

[38]  Magnus Svärd,et al.  Stable and accurate schemes for the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[39]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[40]  Masha Sosonkina,et al.  Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[41]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[42]  Erik Schnetter,et al.  Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions , 2005, J. Sci. Comput..

[43]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[44]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[45]  R. C. Swanson,et al.  On Central-Difference and Upwind Schemes , 1992 .

[46]  Jason E. Hicken,et al.  Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations , 2011, SIAM J. Sci. Comput..

[47]  Jason E. Hicken,et al.  Globalization strategies for inexact-Newton solvers , 2009 .

[48]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[49]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[50]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[51]  R. LeVeque Numerical methods for conservation laws , 1990 .