High field magnetization of the frustrated one-dimensional quantum antiferromagnet LiCuVO4

We have investigated the high field magnetization of the frustrated one-dimensional compound LiCuVO4. In zero field, LiCuVO4 undergoes long range antiferromagnetic order at TN≈2.5 K with a broad short range Schottky type anomaly due to one-dimensional correlations in the specific heat at 32 K. Application of a magnetic field induces a rich phase diagram. An anomaly in the derivative of the magnetization with respect to the applied magnetic field is seen at ∼7.5 T with in the long range order phase. We investigated this in terms of a first experimental evidence of a middle field cusp singularity (MFCS). Our numerical density matrix renormalization group results show that in the parameter range of LiCuVO4 as deduced by inelastic neutron scattering (INS), there exists no MFCS. The anomaly in the derivative of the magnetization at ∼7.5 T is therefore assigned to a change in the spin structure from the ab plane helix seen in zero field neutron diffraction.

[1]  A. Honecker,et al.  Frustrated ferromagnetic spin-12chain in a magnetic field: The phase diagram and thermodynamic properties , 2006, cond-mat/0605204.

[2]  J. Málek,et al.  Quantum helimagnetism of the frustrated spin-1/2 chain LiCuVO4 , 2005 .

[3]  G. McIntyre,et al.  Incommensurate antiferromagnetic order in the quantum chain compound LiCuVO4 , 2004 .

[4]  M. Whangbo,et al.  Investigation of the incommensurate and commensurate magnetic superstructures of LiCuVO4 and CuO on the basis of the isotropic spin exchange and classical spin approximations. , 2004, Inorganic chemistry.

[5]  K. Okunishi,et al.  Fractional S z excitation and its bound state around the 1/3 plateau of the S=1/2 Ising-like zigzag XXZ chain , 2003, cond-mat/0307121.

[6]  K. Okunishi,et al.  Magnetic Phase Diagram of the S=1/2 Antiferromagnetic Zigzag Spin Chain in the Strongly Frustrated Region: Cusp and Plateau , 2002, cond-mat/0211458.

[7]  A. Loidl,et al.  Anisotropic exchange in LiCuVO 4 probed by ESR , 2002, cond-mat/0201403.

[8]  S. Wada,et al.  Nuclear Magnetic Resonance Study on Pseudo One-Dimensional Antiferromagnet LiCuVO4 , 2002 .

[9]  A. Loidl,et al.  Magnetic resonance on LiCuVO4 , 2001 .

[10]  M. Isobe,et al.  Magnetic and resonant properties of quasi-one-dimensional antiferromagnet LiCuVO 4 , 2001 .

[11]  G. Aeppli,et al.  Spin waves and electronic interactions in La2CuO4. , 2000, Physical review letters.

[12]  A. Prokofiev,et al.  Crystal growth of the quasi-one dimensional spin-magnet LiCuVO4 , 2000 .

[13]  K. Okunishi,et al.  Antiferromagnetic zigzag spin chain in magnetic fields at finite temperatures , 2000, cond-mat/0004159.

[14]  K. Okunishi,et al.  Middle-Field Cusp Singularities in the Magnetization Process of One-Dimensional Quantum Antiferromagnets , 1999, cond-mat/9904155.

[15]  A. Honecker,et al.  Magnetic properties of zig-zag ladders , 1999, cond-mat/9902112.

[16]  K. Maisinger,et al.  THERMODYNAMICS OF FRUSTRATED QUANTUM SPIN CHAINS , 1998, cond-mat/9803122.

[17]  T. Tohyama,et al.  ELECTRONIC STATES AND MAGNETIC PROPERTIES OF EDGE-SHARING CU-O CHAINS , 1997, cond-mat/9708232.

[18]  D. Johnston,et al.  Chapter 1 Normal-state magnetic properties of single-layer cuprate high-temperature superconductors and related materials , 1997 .

[19]  Johnston Antiferromagnetic exchange in two-leg spin-1/2 ladders. , 1996, Physical review. B, Condensed matter.

[20]  M. Ishikawa,et al.  Calorimetric Study of Several Cuprates with Restricted Dimensionality , 1996 .

[21]  White,et al.  Dimerization and incommensurate spiral spin correlations in the zigzag spin chain: Analogies to the Kondo lattice. , 1996, Physical review. B, Condensed matter.

[22]  T. Xiang,et al.  Numerical and approximate analytical results for the frustrated spin- 1/2 quantum spin chain , 1995, cond-mat/9511044.

[23]  V. J. Emery,et al.  Quantum Magnetism of CuGeO3. , 1995, Physical review letters.

[24]  S. Uchida,et al.  Evidence for stripe correlations of spins and holes in copper oxide superconductors , 1995, Nature.

[25]  Hase,et al.  Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. , 1993, Physical review letters.

[26]  K. Müller,et al.  Electronic phase separation in La-Cuprates , 1993 .

[27]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[28]  K. Müller,et al.  Percolative phase separation in La2CuO4+δ and La2−xSrxCuO4 , 1992 .

[29]  O. Gunnarsson,et al.  Charged magnetic domain lines and the magnetism of high-Tc oxides. , 1989, Physical review. B, Condensed matter.

[30]  M. Leblanc,et al.  New refinement of the room‐temperature structure of LiCuVO4 , 1989 .

[31]  B. Shastry,et al.  Excitation Spectrum of a Dimerized Next-Neighbor Antiferromagnetic Chain , 1981 .

[32]  Chanchal K. Majumdar,et al.  On Next‐Nearest‐Neighbor Interaction in Linear Chain. II , 1969 .

[33]  H. Nowotny,et al.  Zur Kristallstruktur von CuGeO 3 , 1967 .

[34]  G. Blasse Antiferromagnetism of the spinel LiCuVo4 , 1966 .