THE DUST CLOUD AROUND THE WHITE DWARF G 29-38. II. SPECTRUM FROM 5 TO 40 μm AND MID-INFRARED PHOTOMETRIC VARIABILITY

We model the mineralogy and distribution of dust around the white dwarf G29-39 using the infrared spectrum from 1 to 35 μm. The spectral model for G29-38 dust combines a wide range of materials based on spectral studies of comets and debris disks. In order of their contribution to the mid-infrared emission, the most abundant minerals around G29-38 are amorphous carbon (λ < 8 μm), amorphous and crystalline silicates (5-40 μm), water ice (10-15 and 23-35 μm), and metal sulfides (18-28 μm). The amorphous C can be equivalently replaced by other materials (like metallic Fe) with featureless infrared spectra. The best-fitting crystalline silicate is Fe-rich pyroxene. In order to absorb enough starlight to power the observed emission, the disk must either be much thinner than the stellar radius (so that it can be heated from above and below) or it must have an opening angle wider than 2°. A "moderately optically thick" torus model fits well if the dust extends inward to 50 times the white dwarf radius, all grains hotter than 1100 K are vaporized, the optical depth from the star through the disk is τ║ = 5, and the radial density profile α r ^(–2.7); the total mass of this model disk is 2 × 10^(19) g. A physically thin (less than the white dwarf radius) and optically thick disk can contribute to the near-infrared continuum only; such a disk cannot explain the longer-wavelength continuum or strong emission features. The combination of a physically thin, optically thick inner disk and an outer, physically thick and moderately optically thin cloud or disk produces a reasonably good fit to the spectrum and requires only silicates in the outer cloud. We discuss the mineralogical results in comparison to planetary materials. The silicate composition contains minerals found from cometary spectra and meteorites, but Fe-rich pyroxene is more abundant than enstatite (Mg-rich pyroxene) or forsterite (Mg-rich olivine) in G29-38 dust, in contrast to what is found in most comet or meteorite mineralogies. Enstatite meteorites may be the most similar solar system materials to G29-38 dust. Finally, we suggest the surviving core of a "hot Jupiter" as an alternative (neither cometary nor asteroidal) origin for the debris, though further theoretical work is needed to determine if this hypothesis is viable.

[1]  M. Jura,et al.  Carbon Deficiency in Externally Polluted White Dwarfs: Evidence for Accretion of Asteroids , 2006, astro-ph/0609045.

[2]  P. F. L. Maxted,et al.  Survival of a brown dwarf after engulfment by a red giant star , 2006, Nature.

[3]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[4]  Pierre Bergeron,et al.  PHOTOMETRIC CALIBRATION OF HYDROGEN- AND HELIUM-RICH WHITE DWARF MODELS , 1995 .

[5]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[6]  Timothy D. Glotch,et al.  Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals , 2007 .

[7]  Marc J. Kuchner,et al.  The Dust Cloud around the White Dwarf G29-38 , 2005, astro-ph/0511358.

[8]  “Hot Jupiters” , 2006 .

[9]  K. Holsapple Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61 , 2007 .

[10]  M. C. Wyatt,et al.  On the Nature of the Dust in the Debris Disk around HD 69830 , 2006, astro-ph/0611452.

[11]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[12]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003 .

[13]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[14]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[15]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[16]  Jochen Kissel,et al.  Aspects of the major element composition of Halley's dust , 1988, Nature.

[17]  Michael F. A'Hearn,et al.  The fluorescence of cometary OH , 1988 .

[18]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[19]  Ž. Ivezić,et al.  Erratum: Self-similarity and scaling behaviour of infrared emission from radiatively heated dust — I. Theory , 1997 .

[20]  Ž. Ivezić,et al.  Discs and haloes in pre-main-sequence stars , 2003, astro-ph/0309037.

[21]  P. J. Huggins,et al.  A Debris Disk around the Central Star of the Helix Nebula? , 2007, astro-ph/0702296.

[22]  Mukremin Kilic,et al.  Debris Disks around White Dwarfs: The DAZ Connection , 2006, astro-ph/0603774.

[23]  R. Millan-Gabet,et al.  On the interferometric sizes of young stellar objects , 2002 .

[24]  John H. Debes,et al.  Are There Unstable Planetary Systems around White Dwarfs , 2002 .

[25]  James R. Graham,et al.  The infrared excess of G29-38: A brown dwarf or dust? , 1990 .

[26]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[27]  S. Dermott,et al.  The Collisional Evolution of the Asteroid Belt and Its Contribution to the Zodiacal Cloud , 1997 .

[28]  C. Woodward,et al.  Water in Comet C/2003 K4 (LINEAR) with Spitzer , 2007, 0709.0908.

[29]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[30]  James R. Graham,et al.  FIRST SCATTERED LIGHT IMAGES OF DEBRIS DISKS AROUND HD 53143 AND HD 139664 , 2006 .

[31]  Marc J. Kuchner,et al.  The New Class of Dusty DAZ White Dwarfs , 2007, astro-ph/0703473.

[32]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .

[33]  J. Greenstein,et al.  Spectrophotometry of white dwarfs as observed at high signal-to-noise ratio. II , 1990 .

[34]  D. Brownlee,et al.  Identification of iron sulphide grains in protoplanetary disks , 2002, Nature.

[35]  James Liebert,et al.  Understanding the Cool DA White Dwarf Pulsator, G29–38 , 1997, astro-ph/9711123.

[36]  C. Kaito,et al.  Laboratory production of magnesium sulfide grains and their characteristic infrared spectra due to shape , 2005 .

[37]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[38]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method , 2003 .

[39]  M. McElwain,et al.  Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.

[40]  IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs , 2006, astro-ph/0601468.

[41]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[42]  Pierre Bergeron,et al.  Calibration of Synthetic Photometry Using DA White Dwarfs , 2005 .

[43]  B. N. Ashoka,et al.  Whole Earth Telescope observations of the white dwarf G29-38 : phase variations of the 615 second period , 1990 .

[44]  A. Tsuchiyama,et al.  Compositional dependence of infrared absorption spectra of crystalline silicate: II. Natural and synthetic olivines , 2003 .

[45]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[46]  F. Molster,et al.  The Mineralogy of Interstellar and Circumstellar Dust , 2003 .

[47]  D. Sasselov The New Transiting Planet OGLE-TR-56b: Orbit and Atmosphere , 2003, astro-ph/0303403.

[48]  J. Bradley The Question of Presolar Components within Interplanetary Dust Particles (IDPs) Collected in the Stratosphere , 2002 .

[49]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[50]  M. Barlow,et al.  Detection of carbonates in dust shells around evolved stars , 2002, Nature.

[51]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[52]  L. Colangeli,et al.  Optical constants of cosmic carbon analogue grains — I. Simulation of clustering by a modified continuous distribution of ellipsoids , 1996 .

[53]  D. Lin,et al.  TIDAL DISSIPATION IN ROTATING SOLAR-TYPE STARS , 2007 .

[54]  J. Farihi,et al.  Infrared Emission from the Dusty Disk Orbiting GD 362, an Externally Polluted White Dwarf , 2007 .

[55]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[56]  A. Tsuchiyama,et al.  Compositional dependence of infrared absorption spectra of crystalline silicates - I. Mg–Fe pyroxenes , 2002 .

[57]  F. Allard,et al.  The effect of evaporation on the evolution of close-in giant planets , 2004, astro-ph/0404101.

[58]  The origin of variations in the 2175 A extinction bump , 1994 .

[59]  R. Greenberg,et al.  Steady-State Size Distributions for Collisional Populations: Analytical Solution with Size-Dependent Strength , 2003, 1407.3307.

[60]  C. Chen,et al.  Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766 , 2007, 0710.0839.

[61]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[62]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[63]  Norbert Christlieb,et al.  Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample , 2005 .

[64]  C. Lisse,et al.  Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale-Bopp 1995 O1 and YSO HD 100546 , 2007 .

[65]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .