Families of Periodic Solutions for Some Hamiltonian PDEs

We consider the nonlinear wave equation $u_{tt}-u_{xx}=\pm u^3$ and the beam equation $u_{tt}+u_{xxxx}=\pm u^3$ on an interval. Numerical observations indicate that time-periodic solutions for these equations are organized into structures that resemble branches and seem to undergo bifurcations. In addition to describing our observations, we prove the existence of time-periodic solutions for various periods (a set of positive measure in the case of the beam equation) along the main nontrivial “branch.” Our proofs are computer-assisted.

[1]  Jacek Cyranka,et al.  Existence of Globally Attracting Solutions for One-Dimensional Viscous Burgers Equation with Nonautonomous Forcing - A Computer Assisted Proof , 2014, SIAM J. Appl. Dyn. Syst..

[2]  Hans Koch,et al.  Integration of Dissipative Partial Differential Equations: A Case Study , 2010, SIAM J. Appl. Dyn. Syst..

[3]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[4]  H. Koch,et al.  Some symmetric boundary value problems and non-symmetric solutions , 2015 .

[5]  P. Zgliczynski,et al.  Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .

[6]  W. Schmidt Metrical theorems on fractional parts of sequences , 1964 .

[7]  M. Plum,et al.  A computer-assisted existence proof for Emden's equation on an unbounded L-shaped domain , 2016, 1601.01543.

[8]  Gianni Arioli,et al.  Torsional instability in suspension bridges: The Tacoma Narrows Bridge case , 2015, Commun. Nonlinear Sci. Numer. Simul..

[9]  B. Grébert,et al.  KAM for the nonlinear beam equation 1: small-amplitude solutions , 2014, 1412.2803.

[10]  H. Koch,et al.  Non-symmetric low-index solutions for a symmetric boundary value problem , 2012 .

[11]  Rafael de la Llave,et al.  Numerical Computations and Computer Assisted Proofs of Periodic Orbits of the Kuramoto-Sivashinsky Equation , 2016, SIAM J. Appl. Dyn. Syst..

[12]  Gianni Arioli,et al.  Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .

[13]  Guido Gentile,et al.  Periodic Solutions for Completely Resonant Nonlinear Wave Equations with Dirichlet Boundary Conditions , 2005 .

[14]  G. Gentile,et al.  Periodic Solutions for a Class of Nonlinear Partial Differential Equations in Higher Dimension , 2008, 0804.4365.

[15]  Filomena Pacella,et al.  A uniqueness result for a semilinear elliptic problem: A computer-assisted proof , 2009 .

[16]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[17]  Yoshitaka Watanabe,et al.  Computer Assisted Proofs of Bifurcating Solutions for Nonlinear Heat Convection Problems , 2010, J. Sci. Comput..

[18]  Jia-Quan Liu Free vibrations for an asymmetric beam equation , 2002 .

[19]  F. Gazzola,et al.  On a Nonlinear Nonlocal Hyperbolic System Modeling Suspension Bridges , 2015, 1501.03624.

[20]  S. Lang,et al.  Elliptic Curves: Diophantine Analysis , 1978 .

[21]  Paul H. Rabinowitz,et al.  Free vibrations for a semilinear wave equation , 2010 .

[22]  J. Lessard,et al.  Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation , 2015, 1509.08648.

[23]  W. S. Hall Periodic solutions of a class of weakly nonlinear evolution equations , 1970 .

[24]  LINDSTEDT SERIES FOR PERIODIC SOLUTIONS OF BEAM EQUATIONS WITH QUADRATIC AND VELOCITY DEPENDENT NONLINEARITIES , 2005, math/0505283.

[25]  Massimiliano Berti,et al.  Nonlinear Oscillations of Hamiltonian PDEs , 2007 .