Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis

Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.