TiO 2 Nanotube Arrays Annealed in N 2 for Efficient Lithium-Ion Intercalation

Anatase titania nanotube arrays were fabricated by means of anodization and annealed at 300, 400, and 500 °C in N 2. Lithium-ion intercalation measurements revealed that annealing in nitrogen resulted in much enhanced lithium-ion insertion capacity and improved cyclic stability. TiO 2 nanotube arrays annealed at 300 °C exhibited the best lithium-ion intercalation property with an initial high discharge capacity up to 240 mA·h/g at a high current density of 320 mA/g. The excellent discharge capacity at a high charge/discharge rate could be attributed to the large surface area of the nanotube arrays and a short facile diffusion path for lithium-ion intercalation as well as improved electrical conductivity. As the annealing temperature increased, the discharge capacity decreased, but the cyclic stability improved; 400 °C annealed TiO 2 nanotube arrays possessed an initial discharge capacity of 163 mA·h/g and retained 145 mA·h/g at the 50th cycle. The relationship between the annealing conditions, microstruct...

[1]  Jie Gao,et al.  Reprint of “Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver” , 2007 .

[2]  Jiajun Chen,et al.  Hydrothermal synthesis of cathode materials , 2007 .

[3]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[4]  G. Cao,et al.  TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing , 2007 .

[5]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[6]  Haoshen Zhou,et al.  Nanocrystalline Rutile TiO2 Electrode for High-Capacity and High-Rate Lithium Storage , 2007 .

[7]  G. Cao,et al.  Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells , 2007 .

[8]  Xueping Gao,et al.  Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods , 2007 .

[9]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[10]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[11]  D. Xia,et al.  Preparation and Li-Intercalation Properties of Mesoporous Anatase- TiO2 Spheres , 2007 .

[12]  G. Kearley,et al.  The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. , 2007, Chemistry.

[13]  J. Moon,et al.  Effect of ultrasonic treatment and temperature on nanocrystalline TiO2 , 2006 .

[14]  J. Do,et al.  Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries , 2006 .

[15]  K. I. Gnanasekar,et al.  Nanocrystalline TiO2 (anatase) for Li-ion batteries , 2006 .

[16]  Q. Wang,et al.  Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. , 2006, Inorganic chemistry.

[17]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[18]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[19]  G. Cao,et al.  Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides , 2006 .

[20]  J. Macák,et al.  Annealing effects on the photoresponse of TiO2 nanotubes , 2006 .

[21]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[22]  G. Cao,et al.  Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures. , 2005, The journal of physical chemistry. B.

[23]  Prashant N. Kumta,et al.  LiCoO2 and SnO2 thin film electrodes for lithium-ion battery applications , 2005 .

[24]  Zilong Tang,et al.  H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability , 2005 .

[25]  H. Tamon,et al.  Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying , 2004 .

[26]  Geoffrey A. Ozin,et al.  Electrochromic Performance of Viologen-Modified Periodic Mesoporous Nanocrystalline Anatase Electrodes , 2004 .

[27]  H. Furukawa,et al.  Electrochemical Properties of Nanostructured Amorphous, Sol-gel-Synthesized TiO2 / Acetylene Black Composite Electrodes , 2004 .

[28]  Yingke Zhou,et al.  Lithium Insertion into TiO2 Nanotube Prepared by the Hydrothermal Process , 2003 .

[29]  Bruno Scrosati,et al.  Nanoscale Materials for Lithium-Ion Batteries , 2002 .

[30]  T. Takamura,et al.  Stable charge/discharge of Li at a graphitized carbon fiber electrode in a pure PC electrolyte and the initial charging loss , 2001 .

[31]  Xingfang Hu,et al.  Electrochromic properties of TiO2-doped WO3 films spin-coated from Ti-stabilized peroxotungstic acid , 2001 .

[32]  Ladislav Kavan,et al.  Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects , 2001 .

[33]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[34]  L. Kavan,et al.  Lithium Insertion into Mesoscopic and Single‐Crystal TiO2 (Rutile) Electrodes , 1999 .

[35]  A. Fujishima,et al.  Autoxidation of Acetaldehyde Initiated by TiO2 Photocatalysis under Weak UV Illumination , 1998 .

[36]  J. Herrmann,et al.  Photoconductive and photocatalytic properties of ZrTiO4. Comparison with the parent oxides TiO2 and ZrO2 , 1997 .

[37]  Nick Serpone,et al.  Photocatalyzed destruction of water contaminants , 1991 .

[38]  T. Ohzuku,et al.  Nonaqueous lithium/titanium dioxide cell , 1979 .