Model uncertainty and the pricing of American options

The virtue of an American option is that it can be exercised at any time. This right is particularly valuable when there is model uncertainty. Yet almost all the extensive literature on American options assumes away model uncertainty. This paper quantifies the potential value of this flexibility by identifying the supremum on the price of an American option when we do not impose a model, but rather consider the class of all models which are consistent with a family of European call prices. The bound is enforced by a hedging strategy involving these call options which is robust to model error.

[1]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[2]  Bounds on the American Option , 2007 .

[3]  Tai-Ho Wang,et al.  Static-arbitrage upper bounds for the prices of basket options , 2005 .

[4]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[5]  D. Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .

[6]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[7]  Bruno Bouchard,et al.  Arbitrage and duality in nondominated discrete-time models , 2013, 1305.6008.

[8]  P. Carr,et al.  A note on sufficient conditions for no arbitrage , 2005 .

[9]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .

[10]  Roger Lee,et al.  Hedging variance options on continuous semimartingales , 2010, Finance Stochastics.

[11]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[12]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[13]  Nabil Kahale,et al.  Superreplication of Financial Derivatives via Convex Programming , 2017, Manag. Sci..

[14]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[15]  Peter Carr,et al.  Static Hedging under Time-Homogeneous Diffusions , 2011, SIAM J. Financial Math..

[16]  A. Cox,et al.  MODEL‐INDEPENDENT NO‐ARBITRAGE CONDITIONS ON AMERICAN PUT OPTIONS , 2013, 1301.5467.

[17]  Beatrice Acciaio,et al.  A MODEL‐FREE VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING AND THE SUPER‐REPLICATION THEOREM , 2013, 1301.5568.

[18]  P. Carr,et al.  Static Hedging of Exotic Options , 1998 .

[19]  D. Hobson,et al.  Time-homogeneous diffusions with a given marginal at a random time , 2009, 0912.1719.

[20]  Leonard Rogers,et al.  Robust Hedging of Barrier Options , 2001 .

[21]  Martin Klimmek,et al.  Model-independent hedging strategies for variance swaps , 2012, Finance Stochastics.

[22]  David Hobson,et al.  Robust hedging of the lookback option , 1998, Finance Stochastics.

[23]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[24]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[25]  Jan Oblój,et al.  Robust pricing and hedging of double no-touch options , 2009, Finance Stochastics.

[26]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[27]  David Lamper,et al.  Monte Carlo valuation of American Options , 2004 .