On some approximations in applications of Xα theory

An approximate Xα functional is proposed from which the charge density fitting equations follow variationally. LCAO Xα calculations on atomic nickel and diatomic hydrogen show the method independent of the fitting (auxiliary) bases to within 0.02 eV. Variational properties associated with both orbital and auxiliary basis set incompleteness are used to approach within 0.2 eV the Xα total energy limit for the nitrogen molecule.

[1]  K. Schwarz Optimization of the Statistical Exchange Parameter α for the Free Atoms H through Nb , 1972 .

[2]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[3]  D. W. Turner,et al.  Molecular Photoelectron Spectroscopy , 1972 .

[4]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[5]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[6]  A. C. Wahl,et al.  Electronic Structure of Diatomic Molecules. III. A. Hartree—Fock Wavefunctions and Energy Quantities for N2(X1Σg+) and N2+(X2Σg+, A2Πu, B2Σu+) Molecular Ions , 1966 .

[7]  J. Connolly,et al.  Calculation of the total energy in the multiple scattering‐Xα method. I. General theory , 1974 .

[8]  J. Danese Calculation of the total energy in the multiple scattering-Xα method. II. Numerical technique and results , 1974 .

[9]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[10]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[11]  J. Bearden,et al.  Atomic energy levels , 1965 .

[12]  B. I. Bennett,et al.  Singlet–triplet splittings as obtained from the Xα-scattered wave method: A theoretical analysis , 1975 .

[13]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[14]  Evert Jan Baerends,et al.  Self-consistent molecular hartree—fock—slater calculations. IV. On electron densities, spectroscopic constants and proton affinities of some small molecules , 1976 .

[15]  Arvi Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .

[16]  W. Wiscombe,et al.  Exponential-sum fitting of radiative transmission functions , 1977 .

[17]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[18]  J. C. Slater,et al.  Self-Consistent-Field X α Cluster Method for Polyatomic Molecules and Solids , 1972 .

[19]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[20]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[21]  J. Danese Non-muffin-tin MS Xα total energies for H2, C2, N2 and CO , 1977 .

[22]  J. Koller,et al.  LCAO Approach to SCF-Xα Method , 1976 .

[23]  O. Gunnarsson,et al.  The spin‐density‐functional formalism for quantum mechanical calculations: Test on diatomic molecules with an efficient numerical method , 1976 .

[24]  E. Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations II. The effect of exchange scaling in some small molecules , 1973 .

[25]  R. Gáspár,et al.  Über eine Approximation des Hartree-Fockschen Potentials Durch eine Universelle Potentialfunktion , 1954 .

[26]  R. Parr,et al.  Discontinuous approximate molecular electronic wave‐functions , 1977 .

[27]  R. O. Jones,et al.  Muffin-tin orbitals and the total energy of atomic clusters , 1977 .

[28]  G. Segal Semiempirical Methods of Electronic Structure Calculation , 1977 .

[29]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[30]  J. Connolly,et al.  Total Energy in the Multiple Scattering Formalism: Application to the Water Molecule , 1972 .

[31]  R. Felton,et al.  Calculation of the ionization potentials of ozone and ammonia by a LCAO‐Xα method , 1974 .

[32]  R. O. Jones,et al.  Cluster calculations using muffin-tin orbitals , 1976 .