Blow-up of error estimates in time-fractional initial-boundary value problems

Time-fractional initial-boundary value problems of the form $D_t^\alpha u-p \varDelta u +cu=f$ are considered, where $D_t^\alpha u$ is a Caputo fractional derivative of order $\alpha \in (0,1)$ and the spatial domain lies in $\mathbb{R}^d$ for some $d\in \{1,2,3\}$. As $\alpha \to 1^-$ we prove that the solution $u$ converges, uniformly on the space-time domain, to the solution of the classical parabolic initial-boundary value problem where $D_t^\alpha u$ is replaced by $\partial u/\partial t$. Nevertheless, most of the rigorous analyses of numerical methods for this time-fractional problem have error bounds that blow up as $\alpha \to 1^-$, as we demonstrate. We show that in some cases these analyses can be modified to obtain robust error bounds that do not blow up as $\alpha \to 1^-$.

[1]  R. Jackson Inequalities , 2007, Algebra for Parents.

[2]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[3]  Martin Stynes,et al.  Too much regularity may force too much uniqueness , 2016, 1607.01955.

[4]  Jose L. Gracia,et al.  A Fitted Scheme for a Caputo Initial-Boundary Value Problem , 2018, J. Sci. Comput..

[5]  J. Wang A SECOND-ORDER CRANK-NICOLSON METHOD FOR TIME-FRACTIONAL PDES , 2018 .

[6]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[7]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[8]  Kassem Mustapha,et al.  Optimal Error Analysis of a FEM for Fractional Diffusion Problems by Energy Arguments , 2018, J. Sci. Comput..

[9]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[10]  M. Stynes,et al.  A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing , 2020, IMA Journal of Numerical Analysis.

[11]  William McLean,et al.  Numerical Solution of the Time-Fractional Fokker-Planck Equation with General Forcing , 2015, SIAM J. Numer. Anal..

[12]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[13]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[14]  Kassem Mustapha,et al.  A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients , 2015, Numerical Algorithms.

[15]  Samir Karaa,et al.  Semidiscrete Finite Element Analysis of Time Fractional Parabolic Problems: A Unified Approach , 2017, SIAM J. Numer. Anal..

[16]  Kassem Mustapha,et al.  FEM for time-fractional diffusion equations, novel optimal error analyses , 2016, Math. Comput..

[17]  M. Stynes,et al.  An analysis of the Grünwald–Letnikov scheme for initial-value problems with weakly singular solutions , 2019, Applied Numerical Mathematics.

[18]  Hu Chen,et al.  Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem , 2018, J. Sci. Comput..

[19]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[20]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[21]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[22]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[23]  Xiangcheng Zheng,et al.  Wellposedness and regularity of the variable-order time-fractional diffusion equations , 2019, Journal of Mathematical Analysis and Applications.

[24]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[25]  Martin Stynes,et al.  Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem , 2017, Comput. Methods Appl. Math..

[26]  Bangti Jin,et al.  Subdiffusion with a time-dependent coefficient: Analysis and numerical solution , 2018, Math. Comput..

[27]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[28]  I. James,et al.  Singularities * , 2008 .

[29]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[30]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[31]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[32]  Jiwei Zhang,et al.  A Second-Order Scheme with Nonuniform Time Steps for a Linear Reaction-Subdiffusion Problem , 2018, Communications in Computational Physics.

[33]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[34]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[35]  Wenping Chen,et al.  Spectral and pseudospectral approximations for the time fractional diffusion equation on an unbounded domain , 2016, J. Comput. Appl. Math..