Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide

[1]  Cuiling Li,et al.  Nanoarchitectures for Mesoporous Metals , 2016, Advanced materials.

[2]  P. Ajayan,et al.  Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam. , 2016, Nano letters.

[3]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[4]  D. Macfarlane,et al.  Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide , 2016 .

[5]  M. Shao,et al.  Surface structure and composition effects on electrochemical reduction of carbon dioxide , 2016, Journal of Solid State Electrochemistry.

[6]  J. Hupp,et al.  Electrocatalysis: Powered by porphyrin packing. , 2015, Nature materials.

[7]  Weixin Lv,et al.  Role of the oxide layer on Sn electrode in electrochemical reduction of CO 2 to formate , 2015 .

[8]  P. Rodríguez,et al.  Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction , 2015 .

[9]  Y. Surendranath,et al.  Mesostructure-Induced Selectivity in CO2 Reduction Catalysis. , 2015, Journal of the American Chemical Society.

[10]  P. Ajayan,et al.  Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity. , 2015, Angewandte Chemie.

[11]  D. Zhao,et al.  New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications. , 2015, Chemical Society reviews.

[12]  P. Yang,et al.  Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. , 2015, Journal of the American Chemical Society.

[13]  C. Friend,et al.  Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles. , 2015, Journal of the American Chemical Society.

[14]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[15]  C. Kubiak,et al.  Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2 , 2015 .

[16]  Hussein A. Younus,et al.  Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. , 2015, Chemical Society reviews.

[17]  S. Woo,et al.  Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2. , 2015, ChemSusChem.

[18]  Chao Wang,et al.  Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction. , 2015, Nano letters.

[19]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[20]  P. Strasser,et al.  Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons. , 2015, Angewandte Chemie.

[21]  Hongtao Yu,et al.  Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond. , 2015, Journal of the American Chemical Society.

[22]  Etsuko Fujita,et al.  CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. , 2015, Chemical reviews.

[23]  M. Head‐Gordon,et al.  Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction , 2015 .

[24]  Xile Hu,et al.  Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2. , 2015, Chemical communications.

[25]  G. Lu,et al.  Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires† †Electronic supplementary information (ESI) available: Details of DFT and MD calculations, CHE model and reaction pathways for C2H4 production. See DOI: 10.1039/c5sc02667a Click here for additional data file. , 2015, Chemical science.

[26]  M. Robert,et al.  Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center. , 2015, Journal of the American Chemical Society.

[27]  S. Back,et al.  Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO , 2015 .

[28]  Wilson A. Smith,et al.  Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. , 2015, Physical chemistry chemical physics : PCCP.

[29]  D. Zhong,et al.  A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution , 2015 .

[30]  Matthew W. Kanan,et al.  Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. , 2015, Journal of the American Chemical Society.

[31]  J. Rosen,et al.  Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction , 2015 .

[32]  Paul J. A. Kenis,et al.  Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer , 2015 .

[33]  J. Baek,et al.  Metal-free catalysts for oxygen reduction reaction. , 2015, Chemical reviews.

[34]  P. Ajayan,et al.  Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. , 2015, ACS nano.

[35]  Andrew B. Bocarsly,et al.  Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy , 2015 .

[36]  Marc T. M. Koper,et al.  Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst , 2015 .

[37]  Yuyu Liu,et al.  Invited) Electrochemical CO2 Reduction to Formic Acid on Crystalline SnO2 Nanosphere Catalyst , 2015 .

[38]  John L DiMeglio,et al.  Efficient Conversion of CO₂ to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. , 2015, Journal of the American Chemical Society.

[39]  J. Limtrakul,et al.  CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight , 2015 .

[40]  M. Kanan,et al.  Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. , 2015, Journal of the American Chemical Society.

[41]  Shoushan Fan,et al.  Grain-boundary-dependent CO2 electroreduction activity. , 2015, Journal of the American Chemical Society.

[42]  X. Bao,et al.  Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. , 2015, Journal of the American Chemical Society.

[43]  T. A. Hatton,et al.  Recent Advances in Electrocatalytic Reduction of Carbon Dioxide Using Metal-Free Catalysts , 2015 .

[44]  Geoffrey A Ozin,et al.  Throwing New Light on the Reduction of CO2 , 2015, Advanced materials.

[45]  Chengming Wang,et al.  Composition-dependent activity of Cu–Pt alloy nanocubes for electrocatalytic CO2 reduction , 2015 .

[46]  Y. Minenkov,et al.  A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. , 2015, Angewandte Chemie.

[47]  Xin-bo Zhang,et al.  Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component , 2015, Science Advances.

[48]  A. Peterson,et al.  Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction. , 2015, Physical chemistry chemical physics : PCCP.

[49]  Xin Guo,et al.  Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2. , 2015, Chemical communications.

[50]  Jai Hyun Koh,et al.  Oxygen Plasma Induced Hierarchically Structured Gold Electrocatalyst for Selective Reduction of Carbon Dioxide to Carbon Monoxide , 2015 .

[51]  M. Tadé,et al.  Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. , 2014, Angewandte Chemie.

[52]  Chunguang Chen,et al.  Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals , 2015 .

[53]  Zhimin Liu,et al.  Highly e ffi cient electrochemical reduction of CO 2 to CH 4 in an ionic liquid using a metal – organic framework cathode † , 2015 .

[54]  R. Jurczakowski,et al.  CO₂ electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au(111). , 2014, Langmuir : the ACS journal of surfaces and colloids.

[55]  J. Greeley,et al.  Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. , 2014, Journal of the American Chemical Society.

[56]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[57]  John-Paul Jones,et al.  Recycling of carbon dioxide to methanol and derived products - closing the loop. , 2014, Chemical Society reviews.

[58]  George A. Olah,et al.  Electrochemical CO2 Reduction: Recent Advances and Current Trends , 2014 .

[59]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[60]  Wenzheng Li,et al.  CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles , 2014 .

[61]  Chengyu Ma,et al.  Aqueous CO2 reduction on morphology controlled CuxO nanocatalysts at low overpotential , 2014 .

[62]  Xin Wang,et al.  A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts , 2014 .

[63]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[64]  A. Paul Alivisatos,et al.  Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. , 2014, Journal of the American Chemical Society.

[65]  Hanqing Yu,et al.  Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite , 2014 .

[66]  Falong Jia,et al.  Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets , 2014 .

[67]  Y. Hayashi,et al.  Recurrent CDC25C mutations drive malignant transformation in FPD/AML , 2014, Nature Communications.

[68]  J. Brennecke,et al.  Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films , 2014 .

[69]  Jia‐Xing Lu,et al.  Morphology-controlled CuO nanoparticles for electroreduction of CO2 to ethanol , 2014 .

[70]  Hyung-Kyu Lim,et al.  Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. , 2014, Journal of the American Chemical Society.

[71]  T. A. Hatton,et al.  Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage , 2014 .

[72]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[73]  G. Frankel,et al.  Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential , 2014 .

[74]  Karen Chan,et al.  Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction , 2014 .

[75]  Etosha R. Cave,et al.  Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[76]  A. Bocarsly,et al.  Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[77]  Y. Yamauchi,et al.  Tailored design of functional nanoporous carbon materials toward fuel cell applications , 2014 .

[78]  A. Govindaraj,et al.  Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements , 2014 .

[79]  S. Yamakoshi,et al.  Highly selective electrochemical reduction of CO2 to HCOOH on a gallium oxide cathode , 2014 .

[80]  G. Mul,et al.  Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. , 2014, Physical chemistry chemical physics : PCCP.

[81]  J. Glass,et al.  Polyethylenimine-enhanced electrocatalytic reduction of CO₂ to formate at nitrogen-doped carbon nanomaterials. , 2014, Journal of the American Chemical Society.

[82]  R. J. Kriek,et al.  An electrochemical study of carbon dioxide electroreduction on gold-based nanoparticle catalysts , 2014 .

[83]  A. Alivisatos,et al.  Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis. , 2014, Journal of the American Chemical Society.

[84]  Peter Strasser,et al.  Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. , 2014, Journal of the American Chemical Society.

[85]  Weixin Lv,et al.  Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode , 2014 .

[86]  John L DiMeglio,et al.  Efficient Reduction of CO2 to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials , 2014, Journal of the American Chemical Society.

[87]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[88]  Falong Jia,et al.  Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst , 2014 .

[89]  D. Sokaras,et al.  Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO2 Electroreduction , 2014 .

[90]  H. Vrubel,et al.  Electrochemical reduction of CO2 in organic solvents catalyzed by MoO2. , 2014, Chemical communications.

[91]  Jianping Xiao,et al.  CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface , 2014 .

[92]  M. Koper,et al.  The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes , 2014 .

[93]  Sichao Ma,et al.  Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. , 2014, ChemSusChem.

[94]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[95]  T. Meyer,et al.  Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. , 2014, Journal of the American Chemical Society.

[96]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[97]  Jingjie Wu,et al.  Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell , 2014 .

[98]  A. Fujishima,et al.  High-yield electrochemical production of formaldehyde from CO2 and seawater. , 2014, Angewandte Chemie.

[99]  Jiujun Zhang,et al.  Formation of Cu nanostructured electrode surfaces by an annealing-electroreduction procedure to achieve high-efficiency CO2 electroreduction , 2014 .

[100]  T. Wandlowski,et al.  CO2 Electroreduction on Cu-Modified Platinum Single Crystal Electrodes in Aprotic Media , 2014, Electrocatalysis.

[101]  Wengao Zhao,et al.  Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles , 2014 .

[102]  B. A. Rosen,et al.  Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction , 2013, Nature Communications.

[103]  Zhiqiang Gao,et al.  Metal–organic frameworks in fuel cell technologies , 2013 .

[104]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[105]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[106]  I. Chorkendorff,et al.  CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211) , 2013 .

[107]  Jingjie Wu,et al.  Morphological Stability of Sn Electrode for Electrochemical Conversion of CO2 , 2013 .

[108]  C. Sequeira,et al.  Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits , 2013 .

[109]  P. Strasser,et al.  Controlling Catalytic Selectivities during CO2 Electroreduction on Thin Cu Metal Overlayers , 2013 .

[110]  John L DiMeglio,et al.  Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. , 2013, Journal of the American Chemical Society.

[111]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[112]  M. Koper,et al.  Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals , 2013 .

[113]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[114]  P. Hirunsit Electroreduction of Carbon Dioxide to Methane on Copper, Copper–Silver, and Copper–Gold Catalysts: A DFT Study , 2013 .

[115]  A. Asthagiri,et al.  Selectivity of CO(2) reduction on copper electrodes: the role of the kinetics of elementary steps. , 2013, Angewandte Chemie.

[116]  Jean-Michel Savéant,et al.  Catalysis of the electrochemical reduction of carbon dioxide. , 2013, Chemical Society reviews.

[117]  P. Kenis,et al.  Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis , 2013 .

[118]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[119]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[120]  M. A. Kulandainathan,et al.  Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst , 2012 .

[121]  J. Savéant,et al.  A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst , 2012, Science.

[122]  R. Hamers,et al.  Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using "smart" electrodes. , 2012, Journal of the American Chemical Society.

[123]  M. Koper,et al.  Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. , 2012, Journal of the American Chemical Society.

[124]  Douglas R. Kauffman,et al.  Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. , 2012, Journal of the American Chemical Society.

[125]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[126]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[127]  C. Buess-Herman,et al.  Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys , 2012, Electrocatalysis.

[128]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[129]  D. Zhao,et al.  Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. , 2012, Journal of the American Chemical Society.

[130]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[131]  William J. Durand,et al.  The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. , 2012, Physical chemistry chemical physics : PCCP.

[132]  F. Ke,et al.  Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode , 2012 .

[133]  Y. Zenitani,et al.  Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework , 2012 .

[134]  Neil S. Spinner,et al.  Recent Progress in the Electrochemical Conversion and Utilization of CO2 , 2012 .

[135]  Eric J. Dufek,et al.  Operation of a Pressurized System for Continuous Reduction of CO2 , 2012 .

[136]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[137]  Andrew A. Peterson,et al.  Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces , 2011 .

[138]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[139]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[140]  Pu-Wei Wu,et al.  Facile Electrochemical Fabrication of Large-Area ZnO Inverse Opals with Reduced Defects , 2011 .

[141]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[142]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[143]  C. Sequeira,et al.  Selective electrochemical conversion of CO2 to C2 hydrocarbons , 2010 .

[144]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[145]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[146]  Iwao Omae,et al.  Aspects of carbon dioxide utilization , 2006 .

[147]  D. Rochefort,et al.  XPS investigations of thermally prepared RuO2 electrodes in reductive conditions , 2003 .

[148]  Y. Hori,et al.  Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes , 2002 .

[149]  C. Wöll,et al.  Determination of Site Specific Adsorption Energies of CO on Copper , 2001 .

[150]  A. Hattori,et al.  Electrochemical reduction behavior of carbon dioxide on sintered zinc oxide electrode in aqueous solution , 2000 .

[151]  A. Hattori,et al.  Zinc Ion Effect on the Electrochemical Reduction of Carbon Dioxide at Zinc Electrode in Aqueous Solutions , 1999 .

[152]  J. Flis,et al.  Evolution and Entry of Hydrogen into Iron during Cathodic Charging in Alkaline Solution with Ethylenediaminetetraacetic Acid , 1998 .

[153]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[154]  B. P. Sullivan,et al.  Electrochemical and electrocatalytic reactions of carbon dioxide , 1993 .

[155]  K. W. Frese,et al.  Electrochemical Reduction of CO 2 at Intentionally Oxidized Copper Electrodes , 1991 .

[156]  Kaname Ito,et al.  Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution , 1990 .

[157]  Masahiro Hiramoto,et al.  Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low‐Temperature Aqueous KHCO 3 Media , 1990 .

[158]  K. Hashimoto,et al.  Carbon dioxide reduction at low temperature on various metal electrodes , 1989 .

[159]  Kaname Ito,et al.  Potential Dependencies of the Products on Electrochemical Reduction of Carbon Dioxide at a Copper Electrode , 1989 .

[160]  Ronald L. Cook,et al.  On the Electrochemical Reduction of Carbon Dioxide at In Situ Electrodeposited Copper , 1988 .

[161]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .