Online Estimation of Dynamic Bayesian Network Parameter

In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network (DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov chain (MC) model and to a hidden Markov model (HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

[1]  Pierre Baldi,et al.  Smooth On-Line Learning Algorithms for Hidden Markov Models , 1994, Neural Computation.

[2]  Kwon Soon Lee,et al.  Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks , 2005 .

[3]  J. Mendel Lessons in Estimation Theory for Signal Processing, Communications, and Control , 1995 .

[4]  Vikram Krishnamurthy,et al.  Hidden Markov Model Signal Processing in Presence , 1996 .

[5]  Daniel Hernández-Hernández,et al.  Analysis of a risk-sensitive control problem for hidden Markov chains , 1999, IEEE Trans. Autom. Control..

[6]  Alex Acero,et al.  Spoken Language Processing , 2001 .

[7]  J. C. Stiller,et al.  Online estimation of hidden Markov models , 1999, IEEE Signal Processing Letters.

[8]  Hong Yu,et al.  An application of online learning algorithm for Bayesian network parameter , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[9]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[10]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[11]  Krishna R. Pattipati,et al.  A hidden Markov model-based algorithm for fault diagnosis with partial and imperfect tests , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[12]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[13]  Fabio Gagliardi Cozman,et al.  Adaptive Online Learning of Bayesian Network Parameters , 2001 .

[14]  John B. Moore,et al.  Adaptive Estimation of Hmm Transition Probabilities , 1996, Fourth International Symposium on Signal Processing and Its Applications.

[15]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[16]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .