Compact oracles for reachability and approximate distances in planar digraphs

It is shown that a planar digraph can be preprocessed in near-linear time, producing a near-linear space oracle that can answer reachability queries in constant time. The oracle can be distributed as an O(log n) space label for each vertex and then we can determine if one vertex can reach another considering their two labels only.The approach generalizes to give a near-linear space approximate distances oracle for a weighted planar digraph. With weights drawn from {0, …, N}, it approximates distances within a factor (1 + ϵ) in O(log log (nN) + 1/ϵ) time. Our scheme can be extended to find and route along correspondingly short dipaths.

[1]  Ioannis G. Tollis,et al.  Dynamic Reachability in Planar Digraphs with One Source and One Sink , 1993, Theor. Comput. Sci..

[2]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[3]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[4]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[5]  Sairam Subramanian A Fully Dynamic Data Structure for Reachability in Planar Digraphs , 1993, ESA.

[6]  Mikkel Thorup,et al.  Shortcutting Planar Digraphs , 1995, Combinatorics, Probability and Computing.

[7]  Philip N. Klein,et al.  Fully dynamic approximation schemes for shortest path problems in planar graphs , 1993 .

[8]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.

[9]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[10]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[11]  Mikkel Thorup,et al.  Tree based MPLS routing , 2003, SPAA '03.

[12]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[13]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[14]  Philip N. Klein,et al.  Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.

[15]  D. Peleg Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[16]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[17]  Hristo Djidjev,et al.  On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.

[18]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[19]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[20]  Grammati E. Pantziou,et al.  Fast Algorithms for Maintaining Shortest Paths in Outerplanar and Planar Digraphs , 1995, FCT.

[21]  Mikkel Thorup,et al.  On RAM priority queues , 1996, SODA '96.

[22]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[23]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[24]  Grammati E. Pantziou,et al.  Computing Shortest Paths and Distances in Planar Graphs , 1991, ICALP.

[25]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[26]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[27]  Richard B. Tan,et al.  Computer Networks with Compact Routing Tables , 1986 .

[28]  David Peleg,et al.  Informative labeling schemes for graphs , 2000, Theor. Comput. Sci..

[29]  Piotr Indyk,et al.  Sublinear time algorithms for metric space problems , 1999, STOC '99.

[30]  Brian W. Kernighan,et al.  The C Programming Language , 1978 .

[31]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[32]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[33]  David Peleg,et al.  Proximity-preserving labeling schemes , 2000, J. Graph Theory.

[34]  Danny Ziyi Chen,et al.  On the all-pairs Euclidean short path problem , 1995, SODA '95.

[35]  Jinhui Xu,et al.  Shortest path queries in planar graphs , 2000, STOC '00.