Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin
暂无分享,去创建一个
C. Shih | Lain‐Jong Li | M. Chu | W. Yao | Wen‐Hao Chang | W. Hsu | Bo-Han Lin | Ming-Hao Lee | Li‐Syuan Lu
[1] K. Novoselov,et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.
[2] Xiaodong Xu,et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.
[3] Kenji Watanabe,et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.
[4] Jiaqiang Yan,et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.
[5] S. Banerjee,et al. Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.
[6] H. Jeng,et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers , 2018, Nature Communications.
[7] D. Reichman,et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures , 2018, Nature Physics.
[8] Takashi Taniguchi,et al. Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.
[9] B. Jonker,et al. Double Indirect Interlayer Exciton in a MoSe2/WSe2 van der Waals Heterostructure. , 2018, ACS nano.
[10] E. Kaxiras,et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.
[11] Xiaodong Xu,et al. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.
[12] Xiaodong Xu,et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.
[13] M. Chou,et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.
[14] E. Kaxiras,et al. Electric field tuning of band offsets in transition metal dichalcogenides , 2016, 1612.08431.
[15] Xiaodong Xu,et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers , 2016, Nature Physics.
[16] M. Rohlfing,et al. Reversible uniaxial strain tuning in atomically thin WSe2 , 2016 .
[17] Wang Yao,et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.
[18] Peter Sutter,et al. Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist. , 2016, Nano letters.
[19] Xiaodong Xu,et al. Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.
[20] A. V. Kretinin,et al. Detecting topological currents in graphene superlattices , 2014, Science.
[21] Lain-Jong Li,et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.
[22] S. Louie,et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.
[23] Timothy C. Berkelbach,et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.
[24] K. Novoselov,et al. High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.
[25] Lain-Jong Li,et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.
[26] Lain‐Jong Li,et al. Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.
[27] SUPARNA DUTTASINHA,et al. Van der Waals heterostructures , 2013, Nature.
[28] K. L. Shepard,et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.
[29] Lain-Jong Li,et al. Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.
[30] T. Taniguchi,et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.
[31] Xiaodong Xu,et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers , 2013, Nature Communications.
[32] F. Guinea,et al. Cloning of Dirac fermions in graphene superlattices , 2012, Nature.
[33] R. Murray,et al. The thermal expansion of 2H-MoS2 and 2H-WSe2 between 10 and 320 K , 1979 .
[34] B. L. Evans,et al. The thermal expansion of 2H‐MoS2, 2H‐MoSe2 and 2H‐WSe2 between 20 and 800°C , 1976 .
[35] B. L. Evans,et al. Optical and structural properties of MoSe2 , 1971 .
[36] Juwon Lee,et al. Resonantly hybridised excitons in moiré superlattices in van der Waals heterostructures , 2019 .
[37] Jan-Kai Chang,et al. Monolayer MoSe 2 Grown by Chemical VaporDeposition for Fast Photodetection , 2014 .