Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin

We report the layer-hybridized valley excitons in 2D hetero- and homobilayers manifested by band alignment and valley spin. Excitons in monolayer semiconductors have a large optical transition dipole for strong coupling with light. Interlayer excitons in heterobilayers feature a large electric dipole that enables strong coupling with an electric field and exciton-exciton interaction at the cost of a small optical dipole. We demonstrate the ability to create a new class of excitons in hetero- and homobilayers that combines advantages of monolayer and interlayer excitons, i.e., featuring both large optical and electric dipoles. These excitons consist of an electron confined in an individual layer, and a hole extended in both layers, where the carrier-species–dependent layer hybridization can be controlled through rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of layer-hybridized valley excitons, which can be used for realizing strongly interacting polaritonic gases and optical quantum controls of bidirectional interlayer carrier transfer.

[1]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[2]  Xiaodong Xu,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[3]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[4]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[5]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[6]  H. Jeng,et al.  Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers , 2018, Nature Communications.

[7]  D. Reichman,et al.  Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures , 2018, Nature Physics.

[8]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[9]  B. Jonker,et al.  Double Indirect Interlayer Exciton in a MoSe2/WSe2 van der Waals Heterostructure. , 2018, ACS nano.

[10]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[11]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[12]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[13]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[14]  E. Kaxiras,et al.  Electric field tuning of band offsets in transition metal dichalcogenides , 2016, 1612.08431.

[15]  Xiaodong Xu,et al.  Topological mosaics in moiré superlattices of van der Waals heterobilayers , 2016, Nature Physics.

[16]  M. Rohlfing,et al.  Reversible uniaxial strain tuning in atomically thin WSe2 , 2016 .

[17]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[18]  Peter Sutter,et al.  Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist. , 2016, Nano letters.

[19]  Xiaodong Xu,et al.  Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. , 2015, Physical review letters.

[20]  A. V. Kretinin,et al.  Detecting topological currents in graphene superlattices , 2014, Science.

[21]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[22]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[23]  Timothy C. Berkelbach,et al.  Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. , 2014, Nano letters.

[24]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[25]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[26]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[27]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[28]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[29]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[30]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[31]  Xiaodong Xu,et al.  Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers , 2013, Nature Communications.

[32]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[33]  R. Murray,et al.  The thermal expansion of 2H-MoS2 and 2H-WSe2 between 10 and 320 K , 1979 .

[34]  B. L. Evans,et al.  The thermal expansion of 2H‐MoS2, 2H‐MoSe2 and 2H‐WSe2 between 20 and 800°C , 1976 .

[35]  B. L. Evans,et al.  Optical and structural properties of MoSe2 , 1971 .

[36]  Juwon Lee,et al.  Resonantly hybridised excitons in moiré superlattices in van der Waals heterostructures , 2019 .

[37]  Jan-Kai Chang,et al.  Monolayer MoSe 2 Grown by Chemical VaporDeposition for Fast Photodetection , 2014 .