Patience is a Virtue: The Effect of Slack on Competitiveness for Admission Control

We consider the on-line competitiveness for scheduling a single resource non-preemptively in order to maximize its utilization. Our work examines this model when parameterizing an instance by a new value which we term the patience. This parameter measures each job's willingness to endure a delay before starting, relative to this same job's processing time. Specifically, the slack of a job is defined as the gap between its release time and the last possible time at which it may be started while still meeting its deadline. We say that a problem instance has patience κ, if each job with length ‖J‖ has a slack of at least κ·‖J‖.Without any restrictions placed on the job characteristics, previous lower bounds show that no algorithm, deterministic or randomized, can guarantee a constant bound on the competitiveness of a resulting schedule. Previous researchers have analyzed a problem instance by parameterizing based on the ratio between the longest job's processing time and the shortest job's processing time. Our main contribution is to provide a fine-grained analysis of the problem when simultaneously parameterized by patience and the range of job lengths. We are able to give tight or almost tight bounds on the deterministic competitiveness for all parameter combinations.If viewing the analysis of each parameter individually, our evidence suggests that parameterizing solely on patience provides a richer analysis than parameterizing solely on the ratio of the job lengths. For example, in the special case where all jobs have the same length, we generalize a previous bound of 2 for the deterministic competitiveness with arbitrary slacks, showing that the competitiveness for any κ ≥ 0 is exactly 1+1/(⌊κ⌋+1). Without any bound on the job lengths, a simple greedy algorithm is (2+(1/κ))-competitive for any κ<0. More generally we will find that for any fixed ratio of job lengths, the competitiveness of the problem tends towards 1 as the patience is increased. The converse is not true, as for any fixed κ<0 we find that the competitiveness is bounded away from 1, no matter what further restrictions are placed on the ratio of job lengths.

[1]  Allan Borodin,et al.  On the power of randomization in online algorithms , 1990, STOC '90.

[2]  Hermann Kopetz,et al.  Real-time systems , 2018, CSC '73.

[3]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[4]  Amos Fiat,et al.  Competitive non-preemptive call control , 1994, SODA '94.

[5]  Serge A. Plotkin Competitive Routing of Virtual Circuits in ATM Networks , 1995, IEEE J. Sel. Areas Commun..

[6]  Darrell D. E. Long,et al.  Scheduling real-time disk transfers for continuous media applications , 1993, [1993] Proceedings Twelfth IEEE Symposium on Mass Storage systems.

[7]  Subhash Suri,et al.  Online Scheduling with Hard Deadlines , 2000, J. Algorithms.

[8]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[9]  Yossi Azar,et al.  Throughput-competitive on-line routing , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[10]  Prabhakar Raghavan,et al.  Memory versus randomization in on-line algorithms , 1994, IBM J. Res. Dev..

[11]  Richard J. Lipton,et al.  Online interval scheduling , 1994, SODA '94.

[12]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[13]  Bala Kalyanasundaram,et al.  Speed is as powerful as clairvoyance , 2000, JACM.

[14]  Sanjoy K. Baruah,et al.  Scheduling for Overload in Real-Time Systems , 1997, IEEE Trans. Computers.

[15]  Anja Feldmann,et al.  Competitive Analysis of Call Admission Algorithms that Allow Delay. , 1995 .

[16]  Ran Canetti,et al.  Bandwidth allocation with preemption , 1995, STOC '95.

[17]  Moti Yung,et al.  Efficient On-Line Call Control Algorithms , 1997, J. Algorithms.