Spontaneous synchrony in powergrid networks

An imperative condition for the functioning of a power-grid network is that its power generators remain synchronized. Disturbances can prompt desynchronization, which is a process that has been involved in large power outages. Here we derive a condition under which the desired synchronous state of a power grid is stable, and use this condition to identify tunable parameters of the generators that are determinants of spontaneous synchronization. Our analysis gives rise to an approach to specify parameter assignments that can enhance synchronization of any given network, which we demonstrate for a selection of both test systems and real power grids. These findings may be used to optimize stability and help devise new control schemes, thus offering an additional layer of protection and contributing to the development of smart grids that can recover from failures in real time.

[1]  Tecnología,et al.  North American Electric Reliability Corporation , 2012 .

[2]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[3]  Adilson E Motter,et al.  Robustness of optimal synchronization in real networks. , 2011, Physical review letters.

[4]  R. Roy,et al.  Experimental observation of chimeras in coupled-map lattices , 2012, Nature Physics.

[5]  Edward Ott,et al.  Emergence of coherence in complex networks of heterogeneous dynamical systems. , 2006, Physical review letters.

[6]  Pablo A. Parrilo,et al.  Model reduction for analysis of cascading failures in power systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  E. Ott,et al.  Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.

[8]  M. Brede Synchrony-optimized networks of non-identical Kuramoto oscillators , 2008, 0809.4531.

[9]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[10]  Johnson,et al.  Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Georg A Gottwald,et al.  On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators. , 2011, Chaos.

[12]  J. Kurths,et al.  Enhancing complex-network synchronization , 2004, cond-mat/0406207.

[13]  Clark W. Gellings,et al.  Transforming the Electric Infrastructure , 2004 .

[14]  Takashi Hikihara,et al.  Global swing instability in the New England power grid model , 2009, 2009 American Control Conference.

[15]  M. Lings,et al.  Articles , 1967, Soil Science Society of America Journal.

[16]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[17]  Erik M. Bollt,et al.  Master stability functions for coupled nearly identical dynamical systems , 2008, 0811.0649.

[18]  S. Strogatz,et al.  Chimera states for coupled oscillators. , 2004, Physical review letters.

[19]  Adilson E Motter,et al.  Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions , 2009, Proceedings of the National Academy of Sciences.

[20]  Florian Dörfler,et al.  On the Critical Coupling for Kuramoto Oscillators , 2010, SIAM J. Appl. Dyn. Syst..

[21]  I. Mezic,et al.  Nonlinear Koopman Modes and Coherency Identification of Coupled Swing Dynamics , 2011, IEEE Transactions on Power Systems.

[22]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[23]  Edward Ott,et al.  Theoretical mechanics: Crowd synchrony on the Millennium Bridge , 2005, Nature.

[24]  Marc Timme,et al.  Self-organized synchronization in decentralized power grids. , 2012, Physical review letters.

[25]  L. Leon,et al.  The sound of many hands clapping , 2022 .

[26]  Vito Latora,et al.  Emergence of structural patterns out of synchronization in networks with competitive interactions , 2011, Scientific reports.

[27]  James P. Peerenboom,et al.  Identifying, understanding, and analyzing critical infrastructure interdependencies , 2001 .

[28]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[29]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[30]  A. Díaz-Guilera,et al.  Role of network topology in the synchronization of power systems , 2012, 1207.0406.

[31]  S. Strogatz Exploring complex networks , 2001, Nature.

[32]  Fernando Moya Orsatti,et al.  Optimized network structure for full-synchronization , 2009 .

[33]  F. Bullo,et al.  Spectral Analysis of Synchronization in a Lossless Structure-Preserving Power Network Model , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[34]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[35]  Lubos Buzna,et al.  Synchronization in symmetric bipolar population networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[37]  D. Garlaschelli,et al.  Self-organized network evolution coupled to extremal dynamics , 2006, cond-mat/0611201.

[38]  Boleslaw K. Szymanski,et al.  Network synchronization in a noisy environment with time delays , 2012 .

[39]  K. Showalter,et al.  Chimera and phase-cluster states in populations of coupled chemical oscillators , 2012, Nature Physics.

[40]  H. Gooi,et al.  Coordinated Multi-Machine Stabilizer Settings Without Eigenvalue Drift , 1981, IEEE Transactions on Power Apparatus and Systems.

[41]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.