New perspectives in a gustatory physiology: transduction, development, and plasticity.

Major advances in the understanding of mammalian gustatory transduction mechanisms have occurred in the past decade. Recent research has revealed that a remarkable diversity of cellular mechanisms are involved in taste stimulus reception. These mechanisms range from G protein-and second messenger-linked receptor systems to stimulus-gated and stimulus-admitting ion channels. Contrary to widely held ideas, new data show that some taste stimuli interact with receptive sites that are localized on both the apical and basolateral membranes of taste cells. Studies of taste system development in several species indicate that the transduction pathways for some stimuli are modulated significantly during the early postnatal period. In addition, recent investigations of adult peripheral gustatory system plasticity strongly suggest that the function of the Na+ sensing system can be modulated by circulating hormones, growth factors, or cytokines.

[1]  T. Gilbertson,et al.  Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue , 1996, The Journal of general physiology.

[2]  R. Margolskee,et al.  A cyclic–nucleotide–suppressible conductance activated by transducin in taste cells , 1995, Nature.

[3]  A. Robichon,et al.  Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells , 1995, Nature.

[4]  S. Snyder,et al.  Alternatively spliced forms of the alpha subunit of the epithelial sodium channel: distinct sites for amiloride binding and channel pore. , 1995, Molecular pharmacology.

[5]  D. Smith,et al.  Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: implications for Na+ receptor mechanisms. , 1995, Chemical senses.

[6]  D. Benos,et al.  Immunohistochemical correlates of peripheral gustatory sensitivity to sodium and amiloride. , 1995, Acta anatomica.

[7]  J. Brand,et al.  Generation of inositol phosphates in bitter taste transduction , 1994, Physiology & Behavior.

[8]  R. Margolskee,et al.  Molecular cloning of G proteins and phosphodiesterases from rat taste cells , 1994, Physiology & Behavior.

[9]  T. Gilbertson,et al.  Amiloride reduces the aversiveness of acids in preference tests , 1994, Physiology & Behavior.

[10]  S. Roper,et al.  Reduction of electrical coupling between Necturus taste receptor cells, a possible role in acid taste , 1994, Neuroscience Letters.

[11]  D. Hill,et al.  Functional plasticity of regenerated and intact taste receptors in adult rats unmasked by dietary sodium restriction , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  S. Snyder,et al.  Expression and localization of amiloride-sensitive sodium channel indicate a role for non-taste cells in taste perception. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. C. Whitehead,et al.  Development of fungiform papillae, taste buds, and their innervation in the hamster , 1994, The Journal of comparative neurology.

[14]  L. Schild,et al.  Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits , 1994, Nature.

[15]  G. Schultz,et al.  Some taste substances are direct activators of G-proteins. , 1994, The Biochemical journal.

[16]  S. Kinnamon,et al.  Sweet taste transduction in hamster taste cells: evidence for the role of cyclic nucleotides. , 1993, Journal of neurophysiology.

[17]  G. Zampighi,et al.  Transcellular and paracellular pathways in lingual epithelia and their influence in taste transduction , 1993, Microscopy research and technique.

[18]  Q. Ye,et al.  Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation. , 1993, Journal of neurophysiology.

[19]  S. Simon,et al.  Ion transport across lingual epithelium is modulated by chorda tympani nerve fibers , 1993, Brain Research.

[20]  Q. Ye,et al.  Voltage dependence of the rat chorda tympani response to Na+ salts: implications for the functional organization of taste receptor cells. , 1993, Journal of neurophysiology.

[21]  C. Mistretta,et al.  4-Aminopyridine reduces chorda tympani nerve taste responses to potassium and alkali salts in rat , 1993, Brain Research.

[22]  B. Oakley The gustatory competence of the lingual epithelium requires neonatal innervation. , 1993, Brain research. Developmental brain research.

[23]  M. B. Vogt,et al.  Enduring alterations in neurophysiological taste responses after early dietary sodium deprivation. , 1993, Journal of neurophysiology.

[24]  T. P. Hettinger,et al.  Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve , 1993, The Journal of general physiology.

[25]  S. Kinnamon,et al.  Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction , 1992, The Journal of general physiology.

[26]  R. Margolskee,et al.  Gustducin is a taste-cell-specific G protein closely related to the transducins , 1992, Nature.

[27]  S. Kinnamon,et al.  Apical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli , 1992, The Journal of general physiology.

[28]  S. Kinnamon,et al.  Chemosensory transduction mechanisms in taste. , 1992, Annual review of physiology.

[29]  Q. Ye,et al.  The anion paradox in sodium taste reception: resolution by voltage-clamp studies. , 1991, Science.

[30]  B. K. Formaker,et al.  Lack of amiloride sensitivity in SHR and WKY glossopharyngeal taste responses to NaCl , 1991, Physiology & Behavior.

[31]  S. Kinnamon,et al.  Cellular basis of taste reception , 1991, Current Opinion in Neurobiology.

[32]  B. Lindemann,et al.  Generation of Cyclic AMP in Taste Buds of the Rat Circumvallate Papilla in Response to Sucrose , 1991 .

[33]  Y. Ninomiya,et al.  Gustatory neural responses in preweanling mice , 1991, Physiology & Behavior.

[34]  J. Brand,et al.  Transduction mechanisms for the taste of amino acids , 1991, Physiology & Behavior.

[35]  S. Yamaguchi Basic properties of umami and effects on humans , 1991, Physiology & Behavior.

[36]  S. Roper,et al.  Mediation of responses to calcium in taste cells by modulation of a potassium conductance. , 1991, Science.

[37]  A. Farbman,et al.  Early development and innervation of taste bud‐bearing papillae on the rat tongue , 1991, The Journal of comparative neurology.

[38]  D. Benos,et al.  Epithelial Na+ channels. , 1991, Annual review of physiology.

[39]  Sidney A. Simon,et al.  The anion in salt taste: a possible role for paracellular pathways , 1990, Brain Research.

[40]  B. Lindemann,et al.  Membrane currents in taste cells of the rat fungiform papilla. Evidence for two types of Ca currents and inhibition of K currents by saccharin , 1990, The Journal of general physiology.

[41]  S. Snyder,et al.  Localization of phosphatidylinositol signaling components in rat taste cells: role in bitter taste transduction. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. R. Scott,et al.  Coding channels in the taste system of the rat. , 1990, Science.

[43]  Makoto Nakamura,et al.  Non-specific inhibition by amiloride of canine chorda tympani nerve responses to varius salts: do Na+-specific channels exist in canine taste receptor membranes? , 1990, Brain Research.

[44]  J. Brand,et al.  A stimulus-activated conductance in isolated taste epithelial membranes. , 1990, Biophysical journal.

[45]  T. Kumazawa,et al.  Large enhancement of canine taste responses to sugars by salts , 1990, The Journal of general physiology.

[46]  Thomas P. Hettinger,et al.  Specificity of amiloride inhibition of hamster taste responses , 1990, Brain Research.

[47]  S. Schiffman,et al.  The effect of amiloride analogs on taste responses in gerbil , 1990, Physiology & Behavior.

[48]  M. Jacquin,et al.  Structure‐Function relationships in rat brainstem subnucleus interpolaris: VII. Primary afferent central terminal arbors in adults subjected to infraorbital nerve section at birth , 1989, The Journal of comparative neurology.

[49]  D. Lancet,et al.  Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. , 1989, The Biochemical journal.

[50]  S. Roper The cell biology of vertebrate taste receptors. , 1989, Annual review of neuroscience.

[51]  G. Zampighi,et al.  Morphology of fungiform papillae in canine lingual epithelium: Location of intercellular junctions in the epithelium , 1989, The Journal of comparative neurology.

[52]  M. Fregly,et al.  Sodium appetite: Species and strain differences and role of renin-angiotensin-aldosterone system , 1988, Appetite.

[53]  M. Akabas,et al.  A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. , 1988, Science.

[54]  K. Persaud,et al.  Binding proteins for sweet compounds from gustatory papillae of the cow, pig and rat. , 1988, Biochimica et biophysica acta.

[55]  D. Hill,et al.  Influences of dietary sodium on functional taste receptor development: a sensitive period. , 1988, Science.

[56]  K. Beam,et al.  Apical localization of K+ channels in taste cells provides the basis for sour taste transduction. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Desimone,et al.  Sugar-activated ion transport in canine lingual epithelium. Implications for sugar taste transduction , 1988, The Journal of general physiology.

[58]  E. Kinnman,et al.  Collateral reinnervation of taste buds after chronic sensory denervation: A morphological study , 1988, The Journal of comparative neurology.

[59]  D. Benos,et al.  Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. , 1988, Physiological reviews.

[60]  S. Kinnamon,et al.  Evidence for a role of voltage-sensitive apical K+ channels in sour and salt taste transduction , 1988 .

[61]  D. Hill Development of chorda tympani nerve taste responses in the hamster , 1988, The Journal of comparative neurology.

[62]  K. Tonosaki,et al.  Cyclic nucleotides may mediate taste transduction , 1988, Nature.

[63]  B. Lindemann,et al.  Transduction in taste receptor cells requires cAMP-dependent protein kinase , 1988, Nature.

[64]  R. Bradley,et al.  Developmental decrease in size of peripheral receptive fields of single chorda tympani nerve fibers and relation to increasing NaCl taste sensitivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  P. Ganzevles,et al.  Effects of adaptation and cross-adaptation to common ions on sourness intensity , 1987, Physiology & Behavior.

[66]  D. Hill Susceptibility of the developing rat gustatory system to the physiological effects of dietary sodium deprivation. , 1987, The Journal of physiology.

[67]  H. Harper A Diffusion Potential Model of Salt Taste Receptors a , 1987 .

[68]  J. Yang,et al.  Dye-coupling in taste buds in the mudpuppy, Necturus maculosus , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  J. Watkins,et al.  Agonists and antagonists for excitatory amino acid receptors , 1987, Trends in Neurosciences.

[70]  T. P. Hettinger,et al.  Persistence of taste buds in denervated fungiform papillae , 1987, Brain Research.

[71]  Herness Ms Effect of amiloride on bulk flow and iontophoretic taste stimuli in the hamster , 1987 .

[72]  S. Kinnamon,et al.  Passive and active membrane properties of mudpuppy taste receptor cells. , 1987, The Journal of physiology.

[73]  Yoshii Kiyonori,et al.  Taste receptor mechanism of salts in frog and rat. , 1986 .

[74]  R. H. Cagan Biochemical studies of taste sensation--XII. Specificity of binding of taste ligands to a sedimentable fraction from catfish taste tissue. , 1986, Comparative biochemistry and physiology. A, Comparative physiology.

[75]  G. Beauchamp,et al.  Congenital and experiential factors in the development of human flavor preferences , 1985, Appetite.

[76]  J. Desimone,et al.  The identity of the current carriers in canine lingual epithelium in vitro. , 1985, Biochimica et biophysica acta.

[77]  D. Hill,et al.  Addition of functional amiloride-sensitive components to the receptor membrane: a possible mechanism for altered taste responses during development. , 1985, Brain research.

[78]  J. Brand,et al.  Inhibition by amiloride of chorda tympani responses evoked by monovalent salts , 1985, Brain Research.

[79]  L. T. Do,et al.  Neurophysiology of geniculate ganglion (facial nerve) taste systems: species comparisons , 1985 .

[80]  E. Rubel,et al.  Afferent influences on brain stem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation , 1984, The Journal of comparative neurology.

[81]  J. Desimone,et al.  The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction , 1984, The Journal of general physiology.

[82]  J. Desimone,et al.  Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. , 1984, Science.

[83]  T. P. Hettinger,et al.  Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat. , 1983, Journal of neurophysiology.

[84]  S. Schiffman,et al.  Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[85]  S. Roper Regenerative impulses in taste cells. , 1983, Science.

[86]  R. Bradley,et al.  Neural basis of developing salt taste sensation: Response changes in fetal, postnatal, and adult sheep , 1983, The Journal of comparative neurology.

[87]  B. Oakley,et al.  Chronic impairment of axonal transport eliminates taste responses and taste buds , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  L. T. Do,et al.  Rat neurophysiological taste responses to salt solutions , 1983 .

[89]  R. Bradley,et al.  Developmental changes in taste response characteristics of rat single chorda tympani fibers , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  J. Desimone,et al.  Active ion transport in dog tongue: a possible role in taste. , 1981, Science.

[91]  S. Schiffman,et al.  Multiple receptor sites mediate sweetness: Evidence from cross adaptation , 1981, Pharmacology Biochemistry and Behavior.

[92]  C. Almli,et al.  Ontogeny of chorda tympani nerve responses to gustatory stimuli in the rat , 1980, Brain Research.

[93]  S. Schiffman,et al.  The range of taste quality of sodium salts , 1980, Physiology & Behavior.

[94]  T. Yamada Chorda tympani responses to gustatory stimuli in developing rats. , 1980, The Japanese journal of physiology.

[95]  O. Lundgren,et al.  Vascular anatomy and tissue osmolality in the filiform and fungiform papillae of the cat's tongue. , 1979, Acta physiologica Scandinavica.

[96]  A. Farbman,et al.  Quantitative analyses of the fiber population in rat chorda tympani nerves and fungiform papillae. , 1978, The American journal of anatomy.

[97]  R. Bradley,et al.  Taste responses in sheep medulla: changes during development. , 1978, Science.

[98]  R. A. Bernard,et al.  Intracellular characteristics and responses of taste bud and lingual cells of the mudpuppy , 1978, The Journal of general physiology.

[99]  L. Bartoshuk,et al.  The psychophysics of taste. , 1978, The American journal of clinical nutrition.

[100]  T. Akisaka,et al.  Taste buds in the vallate papillae of the rat studied with freeze-fracture preparation. , 1978, Archivum histologicum Japonicum = Nihon soshikigaku kiroku.

[101]  M. Cheal,et al.  Regeneration of fungiform taste buds: Temporal and spatial characteristics , 1977, The Journal of comparative neurology.

[102]  S. Schiffman,et al.  Taste of dipeptides , 1976, Physiology & Behavior.

[103]  A. Zalewski NEURONAL AND TISSUE SPECIFICATIONS INVOLVED IN TASTE BUD FORMATION , 1974, Annals of the New York Academy of Sciences.

[104]  O. Maller,et al.  Taste in acceptance of sugars by human infants. , 1973, Journal of comparative and physiological psychology.

[105]  W. Winder,et al.  Effect of exhausting exercise on rat heart mitochondria. , 1973, The American journal of physiology.

[106]  R. Bradley,et al.  The gustatory sense in foetal sheep during the last third of gestation , 1973, The Journal of physiology.

[107]  R. Bradley Electrophysiological investigations of intravascular taste using perfused rat tongue. , 1973, The American journal of physiology.

[108]  S. Price,et al.  Phosphodiesterase in Tongue Epithelium: Activation by Bitter Taste Stimuli , 1973, Nature.

[109]  K Kurihara,et al.  Inhibition of cyclic 3′, 5′‐nucleotide phosphodiesterase in bovine taste papillae by bitter taste stimuli , 1972, FEBS letters.

[110]  M. Ozeki Conductance Change Associated with Receptor Potentials of Gustatory Cells in Rat , 1971, The Journal of general physiology.

[111]  R. H. Cagan Biochemical studies of taste sensation. I. Binding of 14 C-labeled sugars to bovine taste papillae. , 1971, Biochimica et biophysica acta.

[112]  Goran Hellekant Efferent impulses in the chorda tympani nerve of the rat. , 1971, Acta physiologica Scandinavica.

[113]  H. Ogawa,et al.  Potentiation of gustatory response to monosodium glutamate in rat chorda tympani fibers by addition of 5'-ribonucleotides. , 1970, The Japanese journal of physiology.

[114]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[115]  D. Mcburney,et al.  Gustatory cross-adaptation: does a single mechanism code the salty taste? , 1969, Journal of experimental psychology.

[116]  S. Price,et al.  Sweet-Sensitive Protein from Bovine Taste Buds: Isolation and Assay , 1966, Science.

[117]  L. M. Beidler,et al.  RENEWAL OF CELLS WITHIN TASTE BUDS , 1965, The Journal of cell biology.

[118]  A. Farbman FINE STRUCTURE OF THE TASTE BUD. , 1965, Journal of ultrastructure research.

[119]  A. Farbman ELECTRON MICROSCOPE STUDY OF THE DEVELOPING TASTE BUD IN RAT FUNGIFORM PAPILLA. , 1965, Developmental biology.

[120]  L. Guth The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat , 1957, The Anatomical record.

[121]  L. M. Beidler,et al.  A THEORY OF TASTE STIMULATION , 1954, The Journal of general physiology.

[122]  L. M. Beidler,et al.  Properties of chemoreceptors of tongue of rat. , 1953, Journal of neurophysiology.