Algorithms for computing a Hermite reduction of a matrix with polynomial coefficients

[1]  P. Samuelson A Method of Determining Explicitly the Coefficients of the Characteristic Equation , 1942 .

[2]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[3]  Michael A. Frumkin,et al.  Polynomial Time Algorithms in the Theory of Linear Diophantine Equations , 1977, FCT.

[4]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[5]  George E. Collins,et al.  Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..

[6]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[7]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[8]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[9]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[10]  M. A. Frumkin,et al.  Complexity questions in number theory , 1985 .

[11]  Ravi Kannan,et al.  Solving Systems of Linear Equations over Polynomials , 1985, Theor. Comput. Sci..

[12]  B. D. Saunders,et al.  Fast parallel computation of hermite and smith forms of polynomial matrices , 1987 .

[13]  Leslie E. Trotter,et al.  Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..

[14]  Dominique Duval,et al.  Algebraic Extensions and Algebraic Closure in Scratchpad II , 1988, ISSAC.

[15]  Costas S. Iliopoulos,et al.  Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..

[16]  Costas S. Iliopoulos Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Infinite Abelian Groups and Solving Systems of Linear Diophantine Equations , 1989, SIAM J. Comput..

[17]  Laureano González-Vega,et al.  Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..

[18]  James Lee Hafner,et al.  Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.

[19]  Gilles Villard,et al.  Generalized Subresultants for Computing the Smith Normal Form of Polynomial Matrices , 1995, J. Symb. Comput..