Algorithms for computing a Hermite reduction of a matrix with polynomial coefficients
暂无分享,去创建一个
[1] P. Samuelson. A Method of Determining Explicitly the Coefficients of the Characteristic Equation , 1942 .
[2] E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .
[3] Michael A. Frumkin,et al. Polynomial Time Algorithms in the Theory of Linear Diophantine Equations , 1977, FCT.
[4] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[5] George E. Collins,et al. Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..
[6] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[7] R. Loos. Generalized Polynomial Remainder Sequences , 1983 .
[8] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[9] Dominique Duval,et al. About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.
[10] M. A. Frumkin,et al. Complexity questions in number theory , 1985 .
[11] Ravi Kannan,et al. Solving Systems of Linear Equations over Polynomials , 1985, Theor. Comput. Sci..
[12] B. D. Saunders,et al. Fast parallel computation of hermite and smith forms of polynomial matrices , 1987 .
[13] Leslie E. Trotter,et al. Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..
[14] Dominique Duval,et al. Algebraic Extensions and Algebraic Closure in Scratchpad II , 1988, ISSAC.
[15] Costas S. Iliopoulos,et al. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..
[16] Costas S. Iliopoulos. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Infinite Abelian Groups and Solving Systems of Linear Diophantine Equations , 1989, SIAM J. Comput..
[17] Laureano González-Vega,et al. Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..
[18] James Lee Hafner,et al. Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.
[19] Gilles Villard,et al. Generalized Subresultants for Computing the Smith Normal Form of Polynomial Matrices , 1995, J. Symb. Comput..