Coupled plasmonic plasmon/photonic resonance effects in SERS

[1]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[2]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[3]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[4]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[5]  D. Citrin Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled. , 2005, Nano letters.

[6]  G. Schatz,et al.  Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ” [J. Chem. Phys. 120, 10871 (2004)] , 2005 .

[7]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[8]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[9]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[10]  George C. Schatz,et al.  Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing , 2004, SPIE Optics + Photonics.

[11]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[12]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[13]  Encai Hao,et al.  Synthesis and Optical Properties of ``Branched'' Gold Nanocrystals , 2004 .

[14]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[15]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[16]  Vladimir M. Shalaev,et al.  Resonant Field Enhancements from Metal Nanoparticle Arrays , 2004 .

[17]  George C. Schatz,et al.  Extinction spectra of silver nanoparticle arrays , 2003, SPIE Optics + Photonics.

[18]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 , 2003, 1002.1505.

[19]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[20]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[21]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[22]  C. Murphy,et al.  Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires , 2003 .

[23]  Nicholas A. Klymyshyn,et al.  Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy , 2003 .

[24]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[25]  J. Hupp,et al.  Synthesis of silver nanodisks using polystyrene mesospheres as templates. , 2002, Journal of the American Chemical Society.

[26]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[27]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[28]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[29]  Christy L. Haynes,et al.  Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing , 2002 .

[30]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[31]  Christian Hafner,et al.  Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[33]  D. Mackowski An effective medium method for calculation of the T matrix of aggregated spheres , 2001 .

[34]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[35]  Vladimir P. Safonov,et al.  Near-field optical study of selective photomodification of fractal aggregates , 2001 .

[36]  Catherine J. Murphy,et al.  Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio , 2001 .

[37]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[39]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[40]  Edgar Voges,et al.  Periodically structured metallic substrates for SERS , 1998 .

[41]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[42]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[43]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[44]  V. Vilker,et al.  SURFACE-ENHANCED RAMAN SPECTROSCOPY OF PHOSPHATE ANIONS : ADSORPTION ON SILVER, GOLD, AND COPPER ELECTRODES , 1997 .

[45]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[46]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[47]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[48]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[49]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[50]  Xie,et al.  Single molecule emission characteristics in near-field microscopy. , 1995, Physical review letters.

[51]  M. Mishchenko,et al.  Scattering of light by bispheres with touching and separated components. , 1995, Applied optics.

[52]  P. Leung,et al.  Nonlocal electrodynamic effect on the enhancement factor for surface enhanced Raman scattering , 1995 .

[53]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[54]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[55]  D. Mackowski,et al.  Calculation of total cross sections of multiple-sphere clusters , 1994 .

[56]  Larry D. Travis,et al.  T-matrix computations of light scattering by large spheroidal particles , 1994 .

[57]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[58]  Vadim A. Markel Coupled-dipole Approach to Scattering of Light from a One-dimensional Periodic Dipole Structure , 1993 .

[59]  R. Aroca,et al.  Fourier transform surface-enhanced Raman scattering of Langmuir-Blodgett monolayers on copper and gold island substrates , 1993 .

[60]  R. V. Duyne,et al.  Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass , 1993 .

[61]  K. Toba,et al.  Charge-transfer band and SERS mechanism for the pyridine-Ag system , 1987 .

[62]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[63]  M. Meier,et al.  Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering , 1986 .

[64]  and H. Metiu,et al.  THE ELECTROMAGNETIC THEORY OF SURFACE ENHANCED SPECTROSCOPY , 1984 .

[65]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[66]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[67]  H. Ladouceur,et al.  Surface‐enhanced Raman scattering from vapor‐deposited copper, silver, and gold. Excitation profiles and temperature dependence , 1983 .

[68]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[69]  F. Adrian Charge transfer effects in surface‐enhanced Raman scatteringa) , 1982 .

[70]  G. Schatz,et al.  The effect of randomly distributed surface bumps on local field enhancements in surface enhanced Raman spectroscopy , 1982 .

[71]  G. W. Robinson SERS: A new method for the study of electronic structure in ultrasmall particles , 1981 .

[72]  R. V. Duyne,et al.  Surface enhanced Raman spectroscopy: A re-examination of the role of surface roughness and electrochemical anodization , 1981 .

[73]  Dau-Sing Y. Wang,et al.  Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. , 1980, Applied optics.

[74]  Robert E. Benner,et al.  Time development of sers from pyridine, pyrimidine, pyrazine, and cyanide adsorbed on ag electrodes during an oxidation-reduction cycle , 1980 .

[75]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[76]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[77]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[78]  M. Suffczyński,et al.  Optical Constants of Metals , 1960 .

[79]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .