Refining Region Estimates

A method for improving the segmentation of images is presented. It involves taking an initial segmentation provided by some other means, and modifying the region boundaries depending on the estimated region models until an equilibrium is reached. The advantages of this technique are: (1) no parameters are required, (2) it is invariant under constant scalings of the image intensities, and (3) it is relatively insensitive to the position and topology of the initial segmentation. Examples are given of its application to single and multi-scale intensity images, textured images, range images and multi-band satellite images.

[1]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Piotr Jasiobedzki Adaptive adjacency graphs , 1993, Optics & Photonics.

[4]  Jean-Pierre Gambotto,et al.  A new approach to combining region growing and edge detection , 1993, Pattern Recognit. Lett..

[5]  Azriel Rosenfeld,et al.  Image analysis: Problems, progress and prospects , 1984, Pattern Recognit..

[6]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[7]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  I. Kanellopoulos,et al.  Land-cover discrimination in SPOT HRV imagery using an artificial neural network - a 20-class experiment , 1992 .

[9]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[10]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Robert H. Laprade Split-and-merge segmentation of aerial photographs , 1988, Comput. Vis. Graph. Image Process..

[12]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[13]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[14]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[15]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Paul L. Rosin Refining region estimates for post-processing image classification , 1994, Remote Sensing.

[17]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[18]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Max A. Viergever,et al.  Kohonen networks for multiscale image segmentation , 1994, Image Vis. Comput..

[20]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[21]  Harry G. Barrow,et al.  Experiments in Interpretation-Guided Segmentation , 1977, Artificial Intelligence.

[22]  Patrick C. Chen,et al.  Image segmentation as an estimation problem , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[23]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Eitan M. Gurari,et al.  On the Difficulties Involved in the Segmentation of Pictures , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  R. Samadani Changes in connectivity in active contour models , 1989, [1989] Proceedings. Workshop on Visual Motion.

[26]  Kenneth I. Laws,et al.  Rapid Texture Identification , 1980, Optics & Photonics.

[27]  Azriel Rosenfeld,et al.  A Note on Thinning , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[29]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[30]  Thierry Pun,et al.  Relaxation network for a feature-driven visual attention system , 1992, Optics & Photonics.