GPS Satellite Orbits

Nominally the Global Positioning System (GPS) consists of 24 satellites (21+3 active spares). The satellites are in almost circular orbits approximately 20 000 km above the surface of the Earth. The siderial revolution period is almost precisely half a siderial day (11h 58m). All GPS satellites, therefore, are in deep 2:1 resonance with the rotation of the Earth with respect to inertial space. This particular characteristic gives rise to perturbations to be discussed in section 2.3.3. Thanks to this particular revolution period essentially the same satellite configuration is observed at a given point on the surface of the Earth at the same time of the day on consecutive days (the constellation repeats itself almost perfectly after 23h56mUT).

[1]  E. Fehlberg,et al.  Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .

[2]  Urs Hugentobler,et al.  Astrometry and satellite orbits: theoretical considerations and typical applications. , 1998 .

[3]  Tim Springer,et al.  Combining the orbits of the IGS Analysis Centers , 1995 .

[4]  W. Neumann Walter de Gruyter Berlin-New York , 1982 .

[5]  Tom Logsdon,et al.  The Navstar Global Positioning System , 1992 .

[6]  Gerhard Beutler,et al.  Resonance Phenomena in the Global Positioning System , 1994 .

[7]  W. M. Kaula Theory of satellite geodesy , 1966 .

[8]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[9]  J. Lieske,et al.  Dynamics and astrometry of natural and artificial celestial bodies. Selected papers. 165th Colloquium of the International Astronomical Union, Poznan (Poland), 1 - 5 Jul 1996. , 1996 .

[10]  H. Fliegel,et al.  Global Positioning System Radiation Force Model for geodetic applications , 1992 .

[11]  J. Zielinski Covariances in 3D network resulting from orbital errors , 1988 .

[12]  Dirk Brouwer,et al.  Erratum [On the accumulation of errors in numerical integration] , 1937 .

[13]  Sayed Yousef,et al.  NAVSTAR : GLOBAL POSITIONING SYSTEM (GPS) , 1985 .

[14]  M. Birnbaum,et al.  The GPS Navigation Message , 1978 .

[15]  Leos Mervart,et al.  Combining consecutive short arcs into long arcs for precise and efficient GPS Orbit Determination , 1996 .

[16]  T. Teichmann,et al.  Fundamentals of celestial mechanics , 1963 .

[17]  N. W. Rhodus,et al.  The GPS 21 primary satellite constellation , 1988 .

[18]  L. Mervart,et al.  Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. , 1994 .

[19]  Herbert Landau Zur Nutzung des Global Positioning Systems in Geodasie und Geodynamik : Modellbildung, Software-Entwicklung und Analyse , 1988 .

[20]  D. J. Allerton,et al.  Book Review: GPS theory and practice. Second Edition, HOFFMANNWELLENHOFF B., LICHTENEGGER H. and COLLINS J., 1993, 326 pp., Springer, £31.00 pb, ISBN 3-211-82477-4 , 1995 .

[21]  Frieder. Andreas Perthes Carolus Fridericus Gauss Theoria motus corporum coelestium in sectionibus conicis solem ambientium , 1855 .