A globally convergent interval method for computing and bounding real roots
暂无分享,去创建一个
In this paper, we extend the interval Newton method to the case where the interval derivative may contain zero. This extended method will isolate and bound all the real roots of a continuously differentiable function in a given interval. In particular, it will bound multiple roots. We prove that the method never fails to converge.
[1] K. Bachmann,et al. Alefeld, G./Herzberger, J., Einführung in die Intervallrechnung, Zürich. B. I.‐Wissenschaftsverlag. 1974. 398 S., DM 22,‐. (Reihe Informatik 12). , 1977 .
[2] K. Nickel. On the Newton Method in Interval Analysis , 1971 .
[3] Eldon Hansen,et al. Topics in Interval Analysis , 1969 .