Novel Approaches to Forensic Explosives Recovery, Storage and Analysis

........................................................................................................................ iii Acknowledgements ........................................................................................................ v Publications .................................................................................................................. vii Conference Presentations ............................................................................................ viii Chapter

[1]  Joseph Wang,et al.  Nanomaterial-based electrochemical detection of explosives: a review of recent developments , 2013 .

[2]  C. Lagrost,et al.  Heterogeneous electron-transfer kinetics of nitro compounds in room-temperature ionic liquids , 2005 .

[3]  N. Beresford,et al.  Effects of acute gamma irradiation on chemical, physical and biological properties of soils , 2003 .

[4]  Rainer Horn,et al.  Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography , 2008 .

[5]  R. Matyáš,et al.  Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX , 2013, Journal of Thermal Analysis and Calorimetry.

[6]  NON-DESTRUCTIVE SOIL TESTING USING X-RAY COMPUTED TOMOGRAPHY , 2004 .

[7]  Holly A Yu,et al.  Assessing a novel contact heater as a new method of recovering explosives traces from porous surfaces. , 2016, Talanta.

[8]  M. Schloter,et al.  N2 Gas Flushing Alleviates the Loss of Bacterial Diversity and Inhibits Psychrotrophic Pseudomonas during the Cold Storage of Bovine Raw Milk , 2016, PloS one.

[9]  Raj Boopathy,et al.  Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report) , 2011 .

[10]  S. C. Lahiri,et al.  Composition profile of low explosives from cases in India , 2006 .

[11]  J. Douse Dynamic headspace method for the improved clean-up of gunshot residues prior to the detection of nitroglycerine by capillary column gas chromatography with thermal energy analysis detection , 1991 .

[12]  Baljit Singh,et al.  Evaluation of Bismuth Modified Carbon Thread Electrode for Simultaneous and Highly Sensitive Cd (II) and Pb (II) Determination , 2016 .

[13]  Z. Ronen,et al.  Biodegradation of explosives mixture in soil under different water-content conditions. , 2012, Journal of hazardous materials.

[14]  S. Doyle Quality and the Trace Detection and Identification of Organic High Explosives , 2011 .

[15]  K. Schorb,et al.  Fast electrochemical Detection of Nitro- and Aminoaromates in Soils and Liquids† , 1997 .

[16]  W. Otten,et al.  Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth , 2010 .

[17]  T. Becker,et al.  Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers , 2010 .

[18]  U. Karst,et al.  Liquid chromatography—Post-column photochemical conversion and electrochemical detection for determination of peroxide-based explosives , 2003 .

[19]  Julian Ramírez,et al.  Solid-state Forensic Finger sensor for integrated sampling and detection of gunshot residue and explosives: towards 'Lab-on-a-finger'. , 2013, The Analyst.

[20]  R. Apak,et al.  Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry. , 2013, Talanta.

[21]  Henric Östmark,et al.  Vapor Pressure of Explosives: A Critical Review , 2012 .

[22]  Philip Doble,et al.  Coupling paper-based microfluidics and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives. , 2014, Analytical chemistry.

[23]  Suman Singh,et al.  Sensors--an effective approach for the detection of explosives. , 2007, Journal of hazardous materials.

[24]  N. Voelcker,et al.  Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in pseudoexfoliation syndrome. , 2011, Ultramicroscopy.

[25]  I. Krull,et al.  The Trace Analysis for Explosives and Related Compounds Via High Performance Liquid Chromatography-Photolysis-Electrochemical Detection , 1984 .

[26]  E. Peñas,et al.  Evaluation of refrigerated storage in nitrogen-enriched atmospheres on the microbial quality, content of bioactive compounds and antioxidant activity of sauerkrauts , 2015 .

[27]  P. Sekhar,et al.  Trace Detection of 2, 4, 6-Trinitrotoluene Using Electrochemical Gas Sensor , 2015, IEEE Sensors Journal.

[28]  Robert G. Ewing,et al.  The vapor pressures of explosives , 2013 .

[29]  Joseph Wang,et al.  Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue 'artificial-peroxidase' modified electrode. , 2006, In Analysis.

[30]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[31]  C. Weiss,et al.  Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases , 2012, Water, Air, & Soil Pollution.

[32]  Maurice Marshall,et al.  Aspects of Explosives Detection , 2011 .

[33]  R. Curini,et al.  LC–MS–MS Determination of Stabilizers and Explosives Residues in Hand-Swabs , 2008 .

[34]  Judith C Pennington,et al.  Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron. , 2009, Journal of environmental quality.

[35]  G. Murray The Significance of Analytical Results in Explosives Investigation , 2011 .

[36]  Nerida Cole,et al.  Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil. , 2016, Journal of chromatography. A.

[37]  Chunhai Fan,et al.  Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. , 2009, Analytical chemistry.

[38]  J. Pignatello,et al.  Concentration‐dependent kinetics of pollutant desorption from soils , 2002, Environmental toxicology and chemistry.

[39]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[40]  Howard T. Mayfield,et al.  Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography , 2006 .

[41]  M. Chappell Solid-Phase Considerations for the Environmental Fate of TNT and RDX in Soil , 2011 .

[42]  T. Lahrz,et al.  Influence of solvents and gas chromatographic injector conditions on the detectability of nitroaromatic compounds. , 2001, Journal of chromatography. A.

[43]  A. McKinley,et al.  A Comparison of Solvent Extract Cleanup Procedures in the Analysis of Organic Explosives , 2013, Journal of forensic sciences.

[44]  Alison M. Cupples,et al.  RDX Degradation Potential in Soils Previously Unexposed to RDX and the Identification of RDX-Degrading Species in One Agricultural Soil Using Stable Isotope Probing , 2013, Water, Air, & Soil Pollution.

[45]  J. Yinon,et al.  Analysis of Explosives , 1977 .

[46]  {MSU/PDDA}n LBL assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds , 2007 .

[47]  Yones Mosaei Oskoei,et al.  Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives , 2015 .

[48]  Dennis H. Evans,et al.  Studies of the electrochemical reduction of some dinitroaromatics , 2007 .

[49]  S. Hesp,et al.  New Class of Reactive Polymer Modifiers for Asphalt: Mitigation of Moisture Damage , 2000 .

[50]  Chang Ming Li,et al.  Porphyrin Functionalized Graphene for Sensitive Electrochemical Detection of Ultratrace Explosives , 2011 .

[51]  V. Mirceski,et al.  Square-Wave Voltammetry: Theory and Application , 2007 .

[52]  A. Verweij,et al.  Liquid chromatographic, thermospray/negative ion, tandem mass spectrometric(LC/TSP/MS/MS) analysis of some explosives , 1993 .

[53]  Howell G M Edwards,et al.  In-situ detection of single particles of explosive on clothing with confocal Raman microscopy. , 2009, Talanta.

[54]  D. Leggett,et al.  On-site analysis of explosives in soil : Evaluation of thin-layer chromatography for confirmation of analyte identity , 1997 .

[55]  Ying Wang,et al.  Poly[meso-tetrakis(2-thienyl)porphyrin] for the sensitive electrochemical detection of explosives , 2010 .

[56]  A. Szabó,et al.  Chronoamperometric current at finite disk electrodes , 1982 .

[57]  D. Silvester,et al.  Low-cost microarray thin-film electrodes with ionic liquid gel-polymer electrolytes for miniaturised oxygen sensing. , 2016, The Analyst.

[58]  H. Girault Analytical and Physical Electrochemistry , 2004 .

[59]  E. Bååth,et al.  Effect of drying and rewetting on bacterial growth rates in soil. , 2008, FEMS microbiology ecology.

[60]  Marianne E Walsh,et al.  The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil. , 2002, Chemosphere.

[61]  D. Dale,et al.  Determination of nitroaromatic and nitramine explosives from a PTFE wipe using thermal desorption-gas chromatography with electron-capture detection. , 2005, Journal of chromatography. A.

[62]  Z. Ronen,et al.  Sequential biodegradation of TNT, RDX and HMX in a mixture. , 2009, Environmental pollution.

[63]  E. Carrilho,et al.  Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection. , 2009, The Analyst.

[64]  R. E. Sesto,et al.  Tetraalkylphosphonium-based ionic liquids , 2005 .

[65]  D. Silvester Recent advances in the use of ionic liquids for electrochemical sensing. , 2011, The Analyst.

[66]  Robert Wilson,et al.  Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate. , 2003, Analytical chemistry.

[67]  E. Sahlin,et al.  Chromatographic detection of nitroaromatic and nitramine compounds by electrochemical reduction combined with photoluminescence following electron transfer. , 2000, Analytical chemistry.

[68]  M. Opallo,et al.  A review on electrodes modified with ionic liquids , 2011 .

[69]  K. Thorn,et al.  15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose. , 2002, Environmental science & technology.

[70]  A. Beveridge,et al.  Forensic Investigation of Explosions , 1998 .

[71]  N. Speers,et al.  Portable Explosive Detection Instruments , 2011 .

[72]  Terence Allen,et al.  Powder Sampling and Particle Size Determination , 2003 .

[73]  Praveen K. Sekhar,et al.  Trace detection of research department explosive (RDX) using electrochemical gas sensor , 2016 .

[74]  Xiangqun Zeng,et al.  Enhancing the sensitivity of ionic liquid sensors for methane detection with polyaniline template , 2008 .

[75]  Xiuhua Zhang,et al.  Nitromethane biosensor based on four heme proteins modified glassy carbon electrodes , 2012 .

[76]  Marianne E. Walsh,et al.  Identification of TNT Transformation Products in Soil , 1992 .

[77]  C. Weiss,et al.  Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions , 2011, Environmental toxicology and chemistry.

[78]  K. Birdi Scanning Probe Microscopes : Applications in Science and Technology , 2003 .

[79]  T. Tamiri,et al.  Analysis of Explosives by Mass Spectrometry , 2011 .

[80]  Judith C. Pennington,et al.  Environmental fate of explosives , 2002 .

[81]  C. Blackman,et al.  Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms. , 2016, Analytical chemistry.

[82]  Dominique Gardebas,et al.  Solid phase micro extraction coupled with on-column GC/ECD for the post-blast analysis of organic explosives. , 2003, Forensic science international.

[83]  J. Hawari,et al.  Microbial degradation of explosives: biotransformation versus mineralization , 2000, Applied Microbiology and Biotechnology.

[84]  Mårten Sandberg,et al.  Oslo government district bombing and Utøya island shooting July 22, 2011: The immediate prehospital emergency medical service response , 2012, Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine.

[85]  Lipo Ma,et al.  Direct mass spectrometric detection of trace explosives in soil samples. , 2012, The Analyst.

[86]  Joseph Wang,et al.  Cyclic and Square‐Wave Voltammetric Signatures of Nitro‐Containing Explosives , 2011 .

[87]  Joseph Wang,et al.  Electrochemical Sensing of Explosives , 2007 .

[88]  Niamh Nic Daeid,et al.  Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil. , 2013, Talanta.

[89]  Niamh Nic Daeid,et al.  Investigating TNT loss between sample collection and analysis. , 2017, Science & justice : journal of the Forensic Science Society.

[90]  Joseph Wang,et al.  Remote electrochemical sensor for monitoring TNT in natural waters , 1998 .

[91]  J R Almirall,et al.  Application of solid-phase microextraction to the recovery of explosives and ignitable liquid residues from forensic specimens. , 2000, Journal of chromatography. A.

[92]  Xiangqun Zeng,et al.  Ionic liquids as green solvents and electrolytes for robust chemical sensor development. , 2012, Accounts of chemical research.

[93]  G. Gillen,et al.  Measurements of Air Jet Removal Efficiencies of Spherical Particles from Cloth and Planar Surfaces , 2008 .

[94]  C. Weiss,et al.  Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils. , 2009, Journal of environmental quality.

[96]  N. Egiebor,et al.  Solid membrane electrode assembly for on board detection of peroxides based explosives , 2016 .

[97]  M. Pumera,et al.  Graphenes Prepared by Hummers, Staudenmaier and Hofmann Methods for Analysis of TNT‐Based Nitroaromatic Explosives in Seawater , 2012 .

[98]  Min-Chieh Chuang,et al.  Textile‐based Electrochemical Sensing: Effect of Fabric Substrate and Detection of Nitroaromatic Explosives , 2010 .

[99]  Andrew J. Mason,et al.  Ionic liquid thin layer EQCM explosives sensor , 2009 .

[100]  Sharon Broome,et al.  The Management of Casework within the United Kingdom Forensic Explosives Laboratory , 2011 .

[101]  Xiangqun Zeng,et al.  Dynamics of redox processes in ionic liquids and their interplay for discriminative electrochemical sensing. , 2012, Analytical chemistry.

[102]  G. Shen,et al.  Au Microelectrode Based on Molecularly Imprinted Oligomer Film for Rapid Electrochemical Sensing , 2003 .

[104]  John G. Anderson,et al.  The thermo-mechanical performance of glass-fibre reinforced Polyamide 66 during glycol-water hydrolysis conditioning , 2010 .

[105]  J. Pichtel Distribution and Fate of Military Explosives and Propellants in Soil: A Review , 2012 .

[106]  Christopher C Mulligan,et al.  Fabric analysis by ambient mass spectrometry for explosives and drugs. , 2008, The Analyst.

[107]  J. Thomason,et al.  Swelling of glass-fibre reinforced Polyamide 66 during conditioning in water, ethylene glycol and antifreeze mixture , 2011 .

[108]  P. Gareil,et al.  Capillary electrophoresis analysis of inorganic cations in post‐blast residue extracts applying a guanidinium‐based electrolyte and bilayer‐coated capillaries , 2011, Electrophoresis.

[109]  S. Lewis,et al.  A case study in forensic chemistry: The Bali bombings. , 2005, Talanta.

[110]  Longhua Tang,et al.  Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. , 2010, Chemical communications.

[111]  J Wang,et al.  Micromachined electrophoresis chips with thick-film electrochemical detectors. , 1999, Analytical chemistry.

[112]  James L. Smith,et al.  Quantification and aging of the post-blast residue of TNT landmines. , 2003, Journal of forensic sciences.

[113]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[114]  A. Chaudhari,et al.  Microbial remediation of nitro-aromatic compounds: an overview. , 2007, Journal of environmental management.

[115]  P. Byron,et al.  The Effects of Formulation Additives on the Degradation of Freeze-Dried Ribonuclease A , 1990, Pharmaceutical Research.

[116]  T. Douglas,et al.  Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. , 2011, Chemosphere.

[117]  Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds. , 2015, Environmental science & technology.

[118]  T. Alatossava,et al.  Potential of Nitrogen Gas (N2) Flushing to Extend the Shelf Life of Cold Stored Pasteurised Milk , 2013, International journal of molecular sciences.

[119]  R. Compton,et al.  Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids , 2008 .

[121]  R. Dhanusha,et al.  Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment , 2006 .

[122]  T. Tamiri,et al.  Analysis of Explosives by Infrared Spectrometry , 2011 .

[123]  K. Rezaei,et al.  Effects of pressure and temperature on enzymatic reactions in supercritical fluids. , 2007, Biotechnology advances.

[124]  W. Miao,et al.  Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate. , 2009, Analytical chemistry.

[125]  G. Whitesides,et al.  Fabrication of glassy carbon microstructures by soft lithography , 1999 .

[126]  T. Alatossava,et al.  Improved Storage of Cold Raw Milk by Continuous Flushing of N2 Gas Separated from Compressed Air: A Pilot Scale Study , 2010 .

[127]  Andrew Crowson,et al.  Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP). , 2002, The Analyst.

[128]  Charles K. Bayne,et al.  Stability of explosives in environmental water and soil samples , 1991 .

[129]  H. K. Evans,et al.  An Unusual Explosive, Triacetonetriperoxide (TATP) , 1986 .

[130]  D. Kaplan,et al.  Biological degradation of explosives and chemical agents , 1992, Biodegradation.

[131]  Chao Zhang,et al.  Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. , 2007, Journal of mass spectrometry : JMS.

[132]  Max M. Houck,et al.  Encyclopedia of Forensic Sciences , 2013 .

[133]  Joshua Ray Windmiller,et al.  Wearable electrochemical sensors for in situ analysis in marine environments. , 2011, The Analyst.

[134]  I. Cheng,et al.  Electrochemical detection of the explosive, hexamethylene triperoxide diamine (HMTD) , 2009 .

[135]  D. Arrigan,et al.  Oxygen reduction voltammetry on platinum macrodisk and screen-printed electrodes in ionic liquids: Reaction of the electrogenerated superoxide species with compounds used in the paste of Pt screen-printed electrodes? , 2013 .

[136]  J. Feijen,et al.  Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers. , 1986, Journal of biomedical materials research.

[137]  Jean-Yves Vermette General Protocols at the Scene of an Explosion , 2011 .

[138]  C. Kitts,et al.  Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil , 1994, Applied and environmental microbiology.

[139]  J. Hawari,et al.  The fate of the cyclic nitramine explosive RDX in natural soil. , 2001, Environmental science & technology.

[140]  S. Beaudoin,et al.  Adhesion of explosives. , 2013, Analytical chemistry.

[141]  David L. Kaplan,et al.  Trinitrotoluene and Metabolites Binding to Humic Acid , 1997 .

[142]  Sarah J. Benson,et al.  Establishing a universal swabbing and clean-up protocol for the combined recovery of organic and inorganic explosive residues. , 2012, Forensic science international.

[143]  A. Marmur,et al.  Adhesion of Standard Explosive Particles to Model Surfaces , 2012 .

[144]  Chittaranjan Ray,et al.  The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: a laboratory and modeling study. , 2011, Journal of hazardous materials.

[145]  Neera Singh,et al.  Degradation of trinitrotoluene in contaminated soils as affected by its initial concentrations and its binding to soil organic matter fractions , 2008, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[146]  J. Centeno,et al.  Biochemical study of industrially produced Arzúa-Ulloa semi-soft cows’ milk cheese: Effects of storage under vacuum and modified atmospheres with high-nitrogen contents , 2011 .

[147]  Chong H. Ahn,et al.  State-of-the-art lab chip sensors for environmental water monitoring , 2011 .

[148]  D. Chambers,et al.  The ash-bed effect in Eucalyptus regnans forest: chemical, physical and microbiological changes in soil after heating or partial sterilisation. , 1994 .

[149]  E. Wang,et al.  Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene. , 2011, Biosensors & bioelectronics.

[150]  C. M. Li,et al.  Ionic liquid–graphene composite for ultratrace explosive trinitrotoluene detection , 2010 .

[151]  E. Canetta,et al.  Morphological changes in textile fibres exposed to environmental stresses: atomic force microscopic examination. , 2009, Forensic science international.

[152]  M. Pumera,et al.  Electrocatalytic effect of ZnO nanoparticles on reduction of nitroaromatic compounds , 2013 .

[153]  Jozef Šesták,et al.  A portable device for fast analysis of explosives in the environment. , 2015, Journal of chromatography. A.

[154]  J. S. Caygill,et al.  Disposable screen-printed sensors for the electrochemical detection of TNT and DNT. , 2013, The Analyst.

[155]  Joseph Wang,et al.  "One-step" simplified electrochemical sensing of TATP based on its acid treatment. , 2007, The Analyst.

[156]  G. E. Speitel,et al.  Fate and Transport of High Explosives in a Sandy Soil: Adsorption and Desorption , 2004 .

[157]  R. J. Scharff,et al.  Portable Raman explosives detection , 2009, Analytical and bioanalytical chemistry.

[158]  K. Ritz,et al.  Investigating microbial micro-habitat structure using X-ray computed tomography , 2006 .

[159]  P. Shea,et al.  Potential of activated carbon to decrease 2,4,6‐trinitrotoluene toxicity and accelerate soil decontamination , 2001, Environmental toxicology and chemistry.

[160]  C. Anbeek The dependence of dissolution rates on grain size for some fresh and weathered feldspars. , 1992 .

[161]  Samuel Kassahun Mamo,et al.  Development of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP) , 2014, Sensors.

[162]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[163]  Mazyar Zeinali,et al.  Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene. , 2008, Analytical chemistry.

[164]  Stefan B. Haderlein,et al.  Specific Adsorption of Nitroaromatic Explosives and Pesticides to Clay Minerals , 1996 .

[165]  J. Yinon,et al.  Modern Methods and Applications in Analysis of Explosives , 1996 .

[166]  G. Sorial,et al.  Electrochemical Reduction of Simulated Munitions Wastewater in a Bench-Scale Batch Reactor , 2002 .

[167]  R G Parker,et al.  Analysis of explosives and explosive residues. Part 1: chemical tests. , 1975, Journal of forensic sciences.

[168]  J. Hawari,et al.  Detection of explosives and their degradation products in soil environments. , 2002, Journal of chromatography. A.

[169]  Rosanne M Guijt,et al.  Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode. , 2007, Analytical chemistry.

[170]  R. Compton,et al.  Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][N(Tf)2] , 2006 .

[171]  T. F. Jenkins,et al.  Holding-time estimates for soils containing explosives residues: Comparison of fortification vs. field contamination , 1995 .

[172]  Francis Tsow,et al.  A hybrid nanosensor for TNT vapor detection. , 2010, Nano letters.

[173]  R. Lal Encyclopedia of Soil Science - Two-Volume Set , 2005 .

[174]  J H Luong,et al.  In‐line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds , 2000, Electrophoresis.

[175]  A. McNeill,et al.  Nature of the clay–cation bond affects soil structure as verified by X-ray computed tomography , 2012 .

[176]  W. Miao,et al.  Sensitive determination of triacetone triperoxide explosives using electrogenerated chemiluminescence. , 2013, Analytical chemistry.

[177]  M. Bruze,et al.  Thin layer chromatography and high pressure liquid chromatography of musk ambrette and other nitromusk compounds including photopatch studies. , 1985, Photo-dermatology.

[178]  W. Engewald,et al.  High-performance liquid chromatographic analysis with electrochemical detection for residues of explosives in water samples around a former ammunition plant , 1996 .

[179]  S. D. Harvey,et al.  Relationship Between the Leachability Characteristics of Unique Energetic Compounds and Soil Properties , 1993 .

[180]  W. LaCourse,et al.  Application of photoassisted electrochemical detection to explosive-containing environmental samples. , 2005, Analytical chemistry.

[181]  Mark Baron,et al.  Design of a Virtual Sensor Data Array for the Analysis of RDX, HMX and DMNB Using Metal-Doped Screen Printed Electrodes and Chemometric Analysis , 2013, International Journal of Electrochemical Science.

[182]  Valerie Cavett,et al.  Visualization and LC/MS analysis of colorless pepper sprays. , 2004, Journal of forensic sciences.

[183]  J. S. Caygill,et al.  Electrochemical detection of TNT at cobalt phthalocyanine mediated screen-printed electrodes and application to detection of airborne vapours , 2013 .

[184]  Philip Doble,et al.  A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μPADs. , 2013, Lab on a chip.

[185]  John H. T. Luong,et al.  Micromachined Electrophoresis Chips with Electrochemical Detectors for Analysis of Explosive Compounds in Soil and Groundwater , 2000 .

[186]  A. McKinley,et al.  An investigation into the fate of organic explosives in soil , 2013 .

[187]  D. Arrigan Electrochemical strategies in detection science , 2015 .

[188]  Rangachary Mukundan,et al.  Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors. , 2011, Journal of hazardous materials.

[189]  D. Arrigan,et al.  Towards improving the robustness of electrochemical gas sensors: impact of PMMA addition on the sensing of oxygen in an ionic liquid , 2015 .

[190]  Arben Merkoçi,et al.  Nanomaterials Based Electrochemical Sensing Applications for Safety and Security , 2012 .

[191]  J. S. Caygill,et al.  Current trends in explosive detection techniques. , 2012, Talanta.

[192]  Tianshu Zhou,et al.  Two-dimensional molecular imprinting approach for the electrochemical detection of trinitrotoluene , 2011 .

[193]  M. Pumera,et al.  Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene , 2014 .

[194]  Jesse A. Contreras,et al.  Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds , 2008, Journal of the American Society for Mass Spectrometry.

[195]  Robert G. Ewing,et al.  Vapor-generation methods for explosives-detection research , 2012 .

[196]  M. B. Talawar,et al.  Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials , 2011 .

[197]  U. Guth,et al.  Electrochemical determination of dissolved nitrogen-containing explosives , 2014 .

[198]  Peter T. Kissinger,et al.  Determination of nitro aromatic, nitramine, and nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid chromatography and reductive electrochemical detection , 1981 .

[199]  Uwe Karst,et al.  Trace analysis of peroxide-based explosives. , 2003, Analytical chemistry.

[200]  J. Almog,et al.  A field diagnostic test for the improvised explosive urea nitrate. , 2005, Journal of forensic sciences.

[201]  Wen Fan,et al.  High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography–mass spectrometry (GC-MS) , 2014, Analytical and Bioanalytical Chemistry.

[202]  Max M. Houck,et al.  Fundamentals of Forensic Science , 2006 .

[203]  M. Breadmore,et al.  Identification of inorganic ions in post‐blast explosive residues using portable CE instrumentation and capacitively coupled contactless conductivity detection , 2008, Electrophoresis.

[204]  Yuyuan Tian,et al.  A hybrid electrochemical-colorimetric sensing platform for detection of explosives. , 2009, Journal of the American Chemical Society.

[205]  Salvatore Almaviva,et al.  Application of micro-Raman spectroscopy for fight against terrorism and smuggling , 2014 .

[206]  O. Drzyzga,et al.  Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. , 1999, Chemosphere.

[207]  J. Lloyd Detection and differentiation of nitrocellulose traces of forensic science interest with reductive mode electrochemical detection at a pendent mercury drop electrode coupled with size-exclusion chromatography , 1984 .

[208]  K. Pinkwart,et al.  A Look Behind Electrochemical Detection of Explosives , 2009 .

[209]  W. Lu,et al.  Molecularly Imprinted Polymers for the Sensing of Explosives and Chemical Warfare Agents , 2015 .

[210]  Richard A. Strobel,et al.  Recovery of Material from the Scene of an Explosion and Its Subsequent Forensic Laboratory Examination—A Team Approach , 2011 .

[211]  Chang Ming Li,et al.  Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. , 2011, Analytica chimica acta.

[212]  B. Glattstein,et al.  ETK: an operational explosive testing kit , 1986 .

[213]  Howell G. M. Edwards,et al.  Raman spectroscopy and security applications: the detection of explosives and precursors on clothing , 2009 .

[214]  M. Pumera,et al.  Nanoporous carbon materials for electrochemical sensing. , 2012, Chemistry, an Asian journal.

[215]  Xiaojuan Fu,et al.  Remote underwater electrochemical sensing system for detecting explosive residues in the field , 2005 .

[216]  J. Fukuto,et al.  Reaction of organic nitrate esters and S-nitrosothiols with reduced flavins: a possible mechanism of bioactivation. , 1999, Drug metabolism and disposition: the biological fate of chemicals.

[217]  R. Blue,et al.  The development of sensors for volatile nitro-containing compounds as models for explosives detection , 2013 .

[218]  M. Zappi,et al.  Screening of Aquatic and Wetland Plant Species for Phytoremediation of Explosives‐contaminated Groundwater from the Iowa Army Ammunition Plant , 1997, Annals of the New York Academy of Sciences.

[219]  A. Hilmi,et al.  Development of Electrokinetic Capillary Electrophoresis Equipped with Amperometric Detection for Analysis of Explosive Compounds , 1999 .

[220]  R. Apak,et al.  Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine-aniline) film modified glassy carbon electrode. , 2015, Talanta.

[221]  B. McCord,et al.  Chromatography of Explosives , 2011 .

[222]  A. McKinley,et al.  A Comparison of Common Swabbing Materials for the Recovery of Organic and Inorganic Explosive Residues , 2013, Journal of forensic sciences.