Nanoscale architecture for frequency-resolving single-photon detectors

[1]  D. Fukuda,et al.  An optical transition-edge sensor with high energy resolution , 2022, 2204.01903.

[2]  D. Fukuda,et al.  Few-Photon Spectral Confocal Microscopy for Cell Imaging Using Superconducting Transition Edge Sensor , 2021, Frontiers in Bioengineering and Biotechnology.

[3]  G. Barillaro,et al.  Solution‐Processable Carbon Nanotube Nanohybrids for Multiplexed Photoresponsive Devices , 2021, Advanced Functional Materials.

[4]  G. G. Giusteri,et al.  Efficient light harvesting and photon sensing via engineered cooperative effects , 2021, New Journal of Physics.

[5]  Lianmao Peng,et al.  Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip. , 2020, ACS nano.

[6]  U. Banin,et al.  Colloidal quantum dot molecules manifesting quantum coupling at room temperature , 2019, Nature Communications.

[7]  S. Young,et al.  Design of High-Performance Photon-Number-Resolving Photodetectors Based on Coherently Interacting Nanoscale Elements , 2019, 1909.07911.

[8]  Xiang Guo,et al.  Broadband on-chip single-photon spectrometer , 2019, Nature Communications.

[9]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[10]  M. E. Foster,et al.  Prospects for Bioinspired Single-Photon Detection Using Nanotube-Chromophore Hybrids , 2019, Scientific Reports.

[11]  M. Dawson,et al.  Hyperspectral Imaging Under Low Illumination with a Single Photon Camera , 2018, 2018 IEEE British and Irish Conference on Optics and Photonics (BICOP).

[12]  2018 IEEE British and Irish Conference on Optics and Photonics (BICOP) , 2018 .

[13]  S. Young,et al.  General modeling framework for quantum photodetectors , 2018, Physical Review A.

[14]  R. Krupke,et al.  Near‐Infrared Photoresponse of Waveguide‐Integrated Carbon Nanotube–Silicon Junctions , 2018, Advanced Electronic Materials.

[15]  F. Léonard,et al.  Room-Temperature Phototransistor with Negative Photoresponsivity of 108 A W-1 Using Fullerene-Sensitized Aligned Carbon Nanotubes. , 2018, Small.

[16]  S. Young,et al.  Fundamental limits to single-photon detection determined by quantum coherence and backaction , 2017, 1710.09512.

[17]  Jerry Tersoff,et al.  Carbon nanotube transistors scaled to a 40-nanometer footprint , 2017, Science.

[18]  Vadim Kovalyuk,et al.  Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits , 2017 .

[19]  K. Yager,et al.  Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale. , 2017, Nano letters.

[20]  Michael J. Sholl,et al.  The DESI Experiment Part II: Instrument Design , 2016, 1611.00037.

[21]  Joe C. Campbell,et al.  Low-noise AlInAsSb avalanche photodiode , 2016 .

[22]  Rainer F. Mahrt,et al.  Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure , 2016, ACS nano.

[23]  Zhenghua An,et al.  Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection , 2015, Scientific Reports.

[24]  Ingmar Müller,et al.  Metrology of single-photon sources and detectors: a review , 2014 .

[25]  I. Ka,et al.  Pulsed Laser Ablation based Direct Synthesis of Single‐Wall Carbon Nanotube/PbS Quantum Dot Nanohybrids Exhibiting Strong, Spectrally Wide and Fast Photoresponse (Adv. Mater. 47/2012) , 2012 .

[26]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, Nature Photonics.

[27]  K. Berggren,et al.  Efficient single photon detection from 500 nm to 5 μm wavelength. , 2012, Nano letters.

[28]  R. Kaiser,et al.  Cooperativity in light scattering by cold atoms , 2012, 1204.5598.

[29]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature Communications.

[30]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[31]  Taro Itatani,et al.  Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. , 2011, Optics express.

[32]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[33]  T. van Buuren,et al.  Determination of the exciton binding energy in CdSe quantum dots. , 2009, ACS nano.

[34]  A. J. Shields,et al.  An avalanche-photodiode-based photon-number-resolving detector , 2008, 0807.0330.

[35]  Aaron J. Miller,et al.  Noise-free high-efficiency photon-number-resolving detectors , 2005, quant-ph/0506175.

[36]  A. Mink,et al.  Quantum key distribution with 1.25 Gbps clock synchronization , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[37]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[38]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[39]  J. Lebensohn Color in Business, Science, and Industry , 1952 .

[40]  D. B. Judd,et al.  Color in Business Science and Industry , 1952 .

[41]  I. Miyazaki,et al.  AND T , 2022 .