Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon's brain

[1]  R. Beason,et al.  Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird , 1984, Nature.

[2]  Klaus-Peter Ossenkopp,et al.  Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice , 1984, Physiology & Behavior.

[3]  M. Kavaliers,et al.  Reduced nocturnal morphine analgesia in mice following a geomagnetic disturbance , 1983, Neuroscience Letters.

[4]  K. Ossenkopp,et al.  Geophysical Variables and Behavior: XI. Open-Field Behaviors in Young Rats Exposed to an ELF Rotating Magnetic Field , 1983, Psychological reports.

[5]  H. Gioanni,et al.  [Single unit activity in the nucleus ectomamillaris (nem) during optokinetic nystagmus, in the pigeon]. , 1982, Comptes rendus des seances de l'Academie des sciences. Serie III, Sciences de la vie.

[6]  P. Öberg,et al.  Influence on frog retina of alternating magnetic fields with special reference to ganglion cell activity , 1981, Medical and Biological Engineering and Computing.

[7]  W. Wiltschko,et al.  Disorientation of inexperienced young pigeons after transportation in total darkness , 1981, Nature.

[8]  L. Britto,et al.  The accessory optic system in pigeons: receptive field properties of identified neurons , 1981, Brain Research.

[9]  S. Hunt,et al.  Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study , 1980, The Journal of comparative neurology.

[10]  H. Karten,et al.  A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken , 1979, Neuroscience.

[11]  G. Harnischfeger An improved method for extracellular marking of electrode tip positions in nervous tissue , 1979, Journal of Neuroscience Methods.

[12]  R. Barbeito,et al.  Bird orientation and the geomagnetic field: A review , 1978, Neuroscience & Biobehavioral Reviews.

[13]  James Olds,et al.  Midbrain unit activity during classical conditioning , 1977, Brain Research.

[14]  P. Clarke,et al.  Some visual and other connections to the cerebellum of the pigeon , 1977, The Journal of comparative neurology.

[15]  S. E. Brauth,et al.  Direct accessory optic projections to the vestibulo-cerebellum: A possible channel for oculomotor control systems , 1977, Experimental Brain Research.

[16]  M. Leask,et al.  A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons , 1977, Nature.

[17]  K. Fite,et al.  Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[18]  W. Wiltschko,et al.  Magnetic Compass of European Robins , 1972, Science.

[19]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[20]  G. Cremer-Bartels,et al.  Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[21]  C. Demaine,et al.  Electrical responses to direct and indirect photic stimulation of the pineal gland in the pigeon , 2005, Journal of Neural Transmission.

[22]  J. Wallman,et al.  Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root (accessory optic system) in chickens , 2004, Experimental Brain Research.

[23]  David Willshaw,et al.  The cerebellum as a neuronal machine , 1999 .

[24]  R. R Baker,et al.  Signal magnetite and direction finding , 1984 .

[25]  W. Wiltschko Compasses used by birds , 1983 .

[26]  W. Wiltschko,et al.  Magnetic Sensitive Pineal Cells in Pigeons , 1982 .