Spline approximation of general volumetric data

We present an efficient algorithm for approximating huge general volumetric data sets, i.e. the data is given over arbitrarily shaped volumes and consists of up to millions of samples. The method is based on cubic trivariate splines, i.e. piecewise polynomials of total degree three defined w.r.t, uniform type-6 tetrahedral partitions of the volumetric domain. Similar as in the recent bivariate approximation approaches (cf. [10, 15]), the splines in three variables are automatically determined from the discrete data as a result of a two-step method (see [40]), where local discrete least squares polynomial approximations of varying degrees are extended by using natural conditions, i.e. the continuity and smoothness properties which determine the underlying spline space. The main advantages of this approach with linear algorithmic complexity are as follows: no tetrahedral partition of the volume data is needed, only small linear systems have to be solved, the local variation and distribution of the data is automatically adapted, Bernstein-Bézier techniques well-known in Computer Aided Geometric Design (CAGD) can be fully exploited, noisy data are automatically smoothed. Our numerical examples with huge data sets for synthetic data as well as some real-world data confirm the efficiency of the methods, show the high quality of the spline approximation, and illustrate that the rendered iso-surfaces inherit a visual smooth appearance from the volume approximating splines.

[1]  Sangkun Park,et al.  High-dimensional trivariate nurbs representation for analyzing and visualizing fluid flow data , 1997, Comput. Graph..

[2]  Thomas A. Foley,et al.  Scattered data interpolation and approximation with error bounds , 1986, Comput. Aided Geom. Des..

[3]  Hans Hagen,et al.  Least squares surface approximation using multiquadrics and parametric domain distortion , 1999, Comput. Aided Geom. Des..

[4]  Christian Rössl,et al.  Quasi-interpolation by quadratic piecewise polynomials in three variables , 2005, Comput. Aided Geom. Des..

[5]  Elaine Cohen,et al.  Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework , 2001, SMA '01.

[6]  Frank Zeilfelder,et al.  Developments in bivariate spline interpolation , 2000 .

[7]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[8]  P. Lancaster Curve and surface fitting , 1986 .

[9]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[10]  G. Farin,et al.  Ann-dimensional Clough-Tocher interpolant , 1987 .

[11]  Frank Zeilfelder,et al.  Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..

[12]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[13]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[14]  Greg Turk,et al.  Reconstructing surfaces using anisotropic basis functions , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[15]  Christian Rössl,et al.  Reconstruction of volume data with quadratic super splines , 2004, IEEE Transactions on Visualization and Computer Graphics.

[16]  Larry L. Schumaker,et al.  C1 Quintic Splines on Type-4 Tetrahedral Partitions , 2004, Adv. Comput. Math..

[17]  Hans-Peter Seidel,et al.  Scattered Data Approximation with Triangular B-Splines , 1996, Advanced Course on FAIRSHAPE.

[18]  Gregory M. Nielson,et al.  Progressive Volume Models for Rectilinear Data using Tetrahedral Coons Volumes , 2000, VisSym.

[19]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[20]  Frank Zeilfelder,et al.  Local Lagrange interpolation by bivariate C 1 cubic splines , 2001 .

[21]  Frank Zeilfelder,et al.  Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations , 2004, Adv. Comput. Math..

[22]  Jack Snoeyink,et al.  Simplicial subdivisions and sampling artifacts , 2001, Proceedings Visualization, 2001. VIS '01..

[23]  G. Nürnberger Approximation by Spline Functions , 1989 .

[24]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[25]  Oleg Davydov On the Approximation Power of Local Least Squares Polynomials , 2001 .

[26]  Frank Zeilfelder,et al.  Scattered Data Fitting with Bivariate Splines , 2002, Tutorials on Multiresolution in Geometric Modelling.

[27]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[28]  Suresh K. Lodha,et al.  Scattered Data Techniques for Surfaces , 1997, Scientific Visualization Conference (dagstuhl '97).

[29]  Frank Zeilfelder,et al.  Construction of cubic 3D spline surfaces by Lagrange interpolation at selected points , 2003 .

[30]  SplinesMing-Jun Lai,et al.  A New Kind of Trivariate C 1 , 2007 .

[31]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[32]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[33]  Frank Zeilfelder,et al.  Local Lagrange Interpolation with Bivariate Splines of Arbitrary Smoothness , 2005 .

[34]  Alessandra Sestini,et al.  Local hybrid approximation for scattered data fitting with bivariate splines , 2006, Comput. Aided Geom. Des..

[35]  Christian Rössl,et al.  Dimension of C1-splines on type-6 tetrahedral partitions , 2004, J. Approx. Theory.

[36]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[37]  Frank Zeilfelder,et al.  Smooth approximation and rendering of large scattered data sets , 2001, Proceedings Visualization, 2001. VIS '01..

[38]  Robert Schaback,et al.  Remarks on Meshless Local Construction of Surfaces , 2000, IMA Conference on the Mathematics of Surfaces.

[39]  Frank Zeilfelder,et al.  Lagrange Interpolation by Bivariate C1-Splines with Optimal Approximation Order , 2004, Adv. Comput. Math..

[40]  Hans-Peter Seidel,et al.  Fitting Triangular B‐Splines to Functional Scattered Data , 1996, Comput. Graph. Forum.

[41]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[42]  C. Micchelli,et al.  On multivariate -splines , 1989 .