On scenarios of the onset of homoclinic attractors in three-dimensional non-orientable maps.
暂无分享,去创建一个
A S Gonchenko | M S Gonchenko | A D Kozlov | E A Samylina | A. Gonchenko | A. D. Kozlov | E. Samylina | Marina Gonchenko
[1] I. R. Sataev,et al. The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top , 2014 .
[2] D. Turaev,et al. Examples of Lorenz-like Attractors in Hénon-like Maps , 2013 .
[3] L. Chua,et al. Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .
[4] L. Shilnikov,et al. Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors , 2008 .
[5] Dmitry Turaev,et al. Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.
[6] Andrey Shilnikov,et al. On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .
[7] A. Kazakov,et al. On discrete Lorenz-like attractors. , 2021, Chaos.
[8] I. R. Sataev,et al. Spiral chaos in the nonholonomic model of a Chaplygin top , 2016 .
[9] Zbigniew Galias,et al. Is the Hénon attractor chaotic? , 2015, Chaos.
[11] George Huitema,et al. Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .
[12] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[13] A. Kazakov,et al. Richness of chaotic dynamics in nonholonomic models of a celtic stone , 2013, Regular and Chaotic Dynamics.
[14] Hendrik Broer,et al. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems , 2011 .
[15] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[16] S. Gonchenko,et al. Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps , 2015, 1510.02252.
[17] A. D. Kozlov,et al. Elements of Contemporary Theory of Dynamical Chaos: A Tutorial. Part I. Pseudohyperbolic Attractors , 2018, Int. J. Bifurc. Chaos.
[18] E. Hopf. A mathematical example displaying features of turbulence , 1948 .
[19] Dmitry Turaev,et al. Simple Scenarios of Onset of Chaos in Three-Dimensional Maps , 2014, Int. J. Bifurc. Chaos.
[20] A. Chenciner,et al. Bifurcations de tores invariants , 1979 .