On scenarios of the onset of homoclinic attractors in three-dimensional non-orientable maps.

We study scenarios of the appearance of strange homoclinic attractors (which contain only one fixed point of saddle type) for one-parameter families of three-dimensional non-orientable maps. We describe several types of such scenarios that lead to the appearance of discrete homoclinic attractors including Lorenz-like and figure-8 attractors (which contain a saddle fixed point) as well as two types of attractors of spiral chaos (which contain saddle-focus fixed points with the one-dimensional and two-dimensional unstable manifolds, respectively). We also emphasize peculiarities of the scenarios and compare them with the known scenarios in the orientable case. Examples of the implementation of the non-orientable scenarios are given in the case of three-dimensional non-orientable generalized Hénon maps.

[1]  I. R. Sataev,et al.  The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top , 2014 .

[2]  D. Turaev,et al.  Examples of Lorenz-like Attractors in Hénon-like Maps , 2013 .

[3]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[4]  L. Shilnikov,et al.  Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors , 2008 .

[5]  Dmitry Turaev,et al.  Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.

[6]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[7]  A. Kazakov,et al.  On discrete Lorenz-like attractors. , 2021, Chaos.

[8]  I. R. Sataev,et al.  Spiral chaos in the nonholonomic model of a Chaplygin top , 2016 .

[9]  Zbigniew Galias,et al.  Is the Hénon attractor chaotic? , 2015, Chaos.

[11]  George Huitema,et al.  Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  A. Kazakov,et al.  Richness of chaotic dynamics in nonholonomic models of a celtic stone , 2013, Regular and Chaotic Dynamics.

[14]  Hendrik Broer,et al.  Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems , 2011 .

[15]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[16]  S. Gonchenko,et al.  Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps , 2015, 1510.02252.

[17]  A. D. Kozlov,et al.  Elements of Contemporary Theory of Dynamical Chaos: A Tutorial. Part I. Pseudohyperbolic Attractors , 2018, Int. J. Bifurc. Chaos.

[18]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[19]  Dmitry Turaev,et al.  Simple Scenarios of Onset of Chaos in Three-Dimensional Maps , 2014, Int. J. Bifurc. Chaos.

[20]  A. Chenciner,et al.  Bifurcations de tores invariants , 1979 .