Doubly Robust Uniform Confidence Band for the Conditional Average Treatment Effect Function

In this paper, we propose a doubly robust method to estimate the heterogeneity of the average treatment effect with respect to observed covariates of interest. We consider a situation where a large number of covariates are needed for identifying the average treatment effect but the covariates of interest for analyzing heterogeneity are of much lower dimension. Our proposed estimator is doubly robust and avoids the curse of dimensionality. We propose a uniform confidence band that is easy to compute, and we illustrate its usefulness via Monte Carlo experiments and an application to the effects of smoking on birth weights.

[1]  Kengo Kato,et al.  Gaussian approximation of suprema of empirical processes , 2012, 1212.6885.

[2]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[3]  Peter Hall,et al.  A simple bootstrap method for constructing nonparametric confidence bands for functions , 2013, 1309.4864.

[4]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[5]  Doubly Robust Uniform Confidence Band for the Conditional Average Treatment Effect Function , 2016 .

[6]  Adam Glynn,et al.  An Introduction to the Augmented Inverse Propensity Weighted Estimator , 2010, Political Analysis.

[7]  Zhiqiang Tan,et al.  Regression and Weighting Methods for Causal Inference Using Instrumental Variables , 2006 .

[8]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[9]  J. Schafer,et al.  Average causal effects from nonrandomized studies: a practical guide and simulated example. , 2008, Psychological methods.

[10]  D. Almond,et al.  Human Capital Development Before Age Five , 2010 .

[11]  Zhiqiang Tan,et al.  Bounded, efficient and doubly robust estimation with inverse weighting , 2010 .

[12]  O. Linton,et al.  Testing for Stochastic Monotonicity , 2006 .

[13]  D. Almond,et al.  The Costs of Low Birth Weight , 2004 .

[14]  J. Wooldridge Inverse probability weighted estimation for general missing data problems , 2004 .

[15]  Subhashis Ghosal,et al.  Testing monotonicity of a regression function. , 2000 .

[16]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[17]  J. Robins,et al.  Locally Robust Semiparametric Estimation , 2016, Econometrica.

[18]  D. Wise,et al.  Do 401(K) Contributions Crowd Out Other Persoanl Saving? , 1993 .

[19]  Jason Abrevaya,et al.  The effects of birth inputs on birthweight : evidence from quantile estimation on panel data by , 2007 .

[20]  M. J. Laan Statistical Inference for Variable Importance , 2006 .

[21]  Matias D. Cattaneo,et al.  Efficient semiparametric estimation of multi-valued treatment effects under ignorability , 2010 .

[22]  J. Lunceford,et al.  Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study , 2004, Statistics in medicine.

[23]  Kengo Kato,et al.  Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors , 2012, 1212.6906.

[24]  Robert P. Lieli,et al.  Estimating Conditional Average Treatment Effects , 2014 .

[25]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[26]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[27]  M. Walker,et al.  Teen Smoking and Birth Outcomes , 2007 .

[28]  Soohyung Lee,et al.  MULTIPLE TESTING AND HETEROGENEOUS TREATMENT EFFECTS: RE-EVALUATING THE EFFECT OF PROGRESA ON SCHOOL ENROLLMENT: HETEROGENEOUS TREATMENT EFFECTS , 2014 .

[29]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1995 .

[30]  James M. Robins,et al.  DOUBLY ROBUST INSTRUMENTAL VARIABLE REGRESSION , 2012 .

[31]  S. D. Uysal,et al.  Doubly Robust Estimation of Causal Effects with Multivalued Treatments: An Application to the Returns to Schooling , 2015 .

[32]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[33]  M. Kramer Intrauterine growth and gestational duration determinants. , 1987, Pediatrics.

[34]  Joseph Kang,et al.  Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data , 2007, 0804.2958.

[35]  D. Pollard Convergence of stochastic processes , 1984 .

[36]  R. P. Wilder,et al.  Maternal Smoking During Pregnancy and Birthweight: A Propensity Score Matching Approach , 2008, Maternal and Child Health Journal.

[37]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1994 .

[38]  Sokbae Lee,et al.  Intersection bounds: estimation and inference , 2009, 0907.3503.

[39]  C. Rothe,et al.  Semiparametric Two-Step Estimation Using Doubly Robust Moment Conditions , 2014 .

[40]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[41]  J J Heckman,et al.  Local instrumental variables and latent variable models for identifying and bounding treatment effects. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Alberto Abadie Semiparametric instrumental variable estimation of treatment response models , 2003 .

[43]  Elizabeth L. Ogburn,et al.  Doubly robust estimation of the local average treatment effect curve , 2015, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[44]  Xiaohong Chen,et al.  Semiparametric efficiency in GMM models with auxiliary data , 2007, 0705.0069.

[45]  M. C. Jones,et al.  Testing Monotonicity of Regression , 1998 .

[46]  Michael Wooldridge,et al.  Econometric Analysis of Cross Section and Panel Data, 2nd Edition , 2001 .

[47]  James M. Robins,et al.  Marginal Structural Models versus Structural nested Models as Tools for Causal inference , 2000 .

[48]  Soohyung Lee,et al.  Multiple Testing and Heterogeneous Treatment Effects: Re-Evaluating the Effect of PROGRESA on School Enrollment , 2013 .

[49]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[50]  Gerda Claeskens,et al.  Bootstrap confidence bands for regression curves and their derivatives , 2003 .

[51]  Jason Abrevaya,et al.  The Effects of Birth Inputs on Birthweight , 2008 .

[52]  Jeffrey S. Racine,et al.  CROSS-VALIDATED LOCAL LINEAR NONPARAMETRIC REGRESSION , 2004 .

[53]  Vladimir I. Piterbarg,et al.  On the convergence rate of maximal deviation distribution for kernel regression estimates , 1984 .

[54]  Jason Abrevaya,et al.  Estimating the effect of smoking on birth outcomes using a matched panel data approach , 2006 .

[55]  Subhashis Ghosal,et al.  TESTING MONOTONICITY OF REGRESSION By , 1998 .