Temporal transcription factors determine circuit membership by permanently altering motor neuron-to-muscle synaptic partnerships

How circuit wiring is specified is a key question in developmental neurobiology. Previously, using the Drosophila motor system as a model, we found the classic temporal transcription factor Hunchback acts in NB7-1 neuronal stem cells to control the number of NB7-1 neuronal progeny form functional synapses on dorsal muscles (Meng et al., 2019). However, it is unknown to what extent control of motor neuron-to-muscle synaptic partnerships is a general feature of temporal transcription factors. Here, we perform additional temporal transcription factor manipulations—prolonging expression of Hunchback in NB3-1, as well as precociously expressing Pdm and Castor in NB7-1. We use confocal microscopy, calcium imaging, and electrophysiology to show that in every manipulation there are permanent alterations in neuromuscular synaptic partnerships. Our data show temporal transcription factors, as a group of molecules, are potent determinants of synaptic partner choice and therefore ultimately control circuit membership.

[1]  J. Urban,et al.  Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. , 2002, Development.

[2]  Shawn R. Lockery,et al.  Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature , 2012, The Journal of Neuroscience.

[3]  A. Chiba,et al.  Single-cell analysis of Drosophila larval neuromuscular synapses. , 2001, Developmental biology.

[4]  Silvia Arber,et al.  Motor Circuits in Action: Specification, Connectivity, and Function , 2012, Neuron.

[5]  C. A. Frank,et al.  Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis , 2006, Neuron.

[6]  P. Caroni,et al.  Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus , 2011, Nature Neuroscience.

[7]  Aref Arzan Zarin,et al.  The role of lineage, hemilineage and temporal identity in establishing neuronal connectivity in the Drosophila larval CNS , 2019, bioRxiv.

[8]  H. Broihier,et al.  Drosophila Homeodomain Protein dHb9 Directs Neuronal Fate via Crossrepressive and Cell-Nonautonomous Mechanisms , 2002, Neuron.

[9]  L. Griffith,et al.  Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. , 2004, Journal of neurophysiology.

[10]  Robert A. Carrillo,et al.  Transsynaptic interactions between IgSF proteins DIP-α and Dpr10 are required for motor neuron targeting specificity , 2018, bioRxiv.

[11]  P. Mattar,et al.  A Conserved Regulatory Logic Controls Temporal Identity in Mouse Neural Progenitors , 2015, Neuron.

[12]  Chris Q Doe,et al.  Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. , 2006, Genes & development.

[13]  Bret J. Pearson,et al.  Regulation of neuroblast competence in Drosophila , 2003, Nature.

[14]  J. Stratmann,et al.  Neuronal Cell Fate Specification by the Convergence of Different Spatiotemporal Cues on a Common Terminal Selector Cascade , 2016, PLoS biology.

[15]  Chris Q Doe,et al.  Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window. , 2006, Genes & development.

[16]  Matthias Landgraf,et al.  Midline Signalling Systems Direct the Formation of a Neural Map by Dendritic Targeting in the Drosophila Motor System , 2009, PLoS biology.

[17]  Ashok Litwin-Kumar,et al.  A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila , 2019, eLife.

[18]  Bret J. Pearson,et al.  Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny , 2001, Cell.

[19]  J. Stratmann,et al.  Neuronal cell fate diversification controlled by sub-temporal action of Kruppel , 2016, eLife.

[20]  Aref Arzan Zarin,et al.  Neural circuits driving larval locomotion in Drosophila , 2018, Neural Development.

[21]  C. Rickert,et al.  The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. , 1996, Developmental biology.

[22]  Bret J. Pearson,et al.  Specification of temporal identity in the developing nervous system. , 2004, Annual review of cell and developmental biology.

[23]  M. Bate,et al.  The Origin, Location, and Projections of the Embryonic Abdominal Motorneurons of Drosophila , 1997, The Journal of Neuroscience.

[24]  M. Bate,et al.  even-skipped Determines the Dorsal Growth of Motor Axons in Drosophila , 1999, Neuron.

[25]  A. Cardona,et al.  A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS , 2019, eLife.

[26]  David Schoppik,et al.  Extraocular motoneuron pools develop along a dorsoventral axis in zebrafish, Danio rerio , 2016, The Journal of comparative neurology.

[27]  M. Landgraf,et al.  Development of Drosophila motoneurons: specification and morphology. , 2006, Seminars in cell & developmental biology.

[28]  Susan J. Brown,et al.  The repressor activity of Even-skipped is highly conserved, and is sufficient to activate engrailed and to regulate both the spacing and stability of parasegment boundaries. , 2002, Development.

[29]  C. Doe,et al.  The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. , 1995, Development.

[30]  John B. Thomas,et al.  The Homeobox Transcription Factor Even-skipped Regulates Netrin-Receptor Expression to Control Dorsal Motor-Axon Projections in Drosophila , 2005, Current Biology.

[31]  Marco Tripodi,et al.  Motor antagonism exposed by spatial segregation and timing of neurogenesis , 2011, Nature.

[32]  C. Desplan,et al.  Temporal patterning of Drosophila medulla neuroblasts controls neural fates , 2013, Nature.

[33]  C. Doe,et al.  A novel temporal identity window generates alternating cardinal motor neuron subtypes in a single progenitor lineage , 2020, bioRxiv.

[34]  Chris Q Doe,et al.  Temporal identity establishes columnar neuron morphology, connectivity, and function in a Drosophila navigation circuit , 2018, bioRxiv.

[35]  C Q Doe,et al.  Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. , 1999, Development.

[36]  Ehud Y. Isacoff,et al.  Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction , 2017, Neuron.

[37]  Hanchuan Peng,et al.  Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience , 2014, Development.

[38]  J. Stratmann,et al.  Neuronal cell fate specification by the molecular convergence of different spatio-temporal cues on a common initiator terminal selector gene , 2017, PLoS genetics.

[39]  D. Allan,et al.  Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification , 2015, Wiley interdisciplinary reviews. Developmental biology.

[40]  M. Cayouette,et al.  Ikaros Confers Early Temporal Competence to Mouse Retinal Progenitor Cells , 2008, Neuron.

[41]  J. Briscoe,et al.  Specification of neuronal fates in the ventral neural tube , 2001, Current Opinion in Neurobiology.

[42]  How prolonged expression of Hunchback, a temporal transcription factor, re-wires locomotor circuits , 2019, eLife.

[43]  C. Doe Temporal Patterning in the Drosophila CNS. , 2017, Annual review of cell and developmental biology.

[44]  S. Thor,et al.  Neuronal Subtype Specification within a Lineage by Opposing Temporal Feed-Forward Loops , 2009, Cell.

[45]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[46]  Matthias Landgraf,et al.  Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude , 2015, Neuron.

[47]  Thomas D. James,et al.  Homeostatic control of Drosophila neuromuscular junction function , 2019, Synapse.

[48]  Richard S. Mann,et al.  Specification of Individual Adult Motor Neuron Morphologies by Combinatorial Transcription Factor Codes , 2015, Neuron.

[49]  K. Kawakami,et al.  Neuronal Birth Order Identifies a Dimorphic Sensorineural Map , 2012, The Journal of Neuroscience.

[50]  Chris Q Doe,et al.  Pdm and Castor close successive temporal identity windows in the NB3-1 lineage , 2008, Development.

[51]  R. Fetter,et al.  NF-κB, IκB, and IRAK Control Glutamate Receptor Density at the Drosophila NMJ , 2007, Neuron.

[52]  R. Dorsky,et al.  Regulation and function of Dbx genes in the zebrafish spinal cord , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[53]  T. Hummel,et al.  Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system , 2016, eLife.

[54]  Punita Bhansali,et al.  Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice , 2014, Neural Development.

[55]  H. Broihier,et al.  Drosophila homeodomain protein Nkx6 coordinates motoneuron subtype identity and axonogenesis , 2004, Development.

[56]  T. Hummel,et al.  Temporal identity in axonal target layer recognition , 2008, Nature.

[57]  Phong L. Nguyen,et al.  Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. , 2014, Cell reports.

[58]  J. Renger,et al.  Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions , 1994, Journal of Comparative Physiology A.

[59]  P. Dayan,et al.  A mathematical model explains saturating axon guidance responses to molecular gradients , 2016, eLife.

[60]  Daniel C. Lu,et al.  Molecular and cellular development of spinal cord locomotor circuitry , 2015, Front. Mol. Neurosci..

[61]  Vilaiwan M. Fernandes,et al.  Timing temporal transitions during brain development , 2017, Current Opinion in Neurobiology.

[62]  F. J. Livesey,et al.  Ikaros promotes early-born neuronal fates in the cerebral cortex , 2013, Proceedings of the National Academy of Sciences.

[63]  C Q Doe,et al.  The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. , 1996, Developmental biology.

[64]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[65]  C. Doe,et al.  The Hunchback temporal transcription factor determines motor neuron axon and dendrite targeting in Drosophila , 2019, Development.

[66]  H. Sink,et al.  Location and connectivity of abdominal motoneurons in the embryo and larva of Drosophila melanogaster. , 1991, Journal of neurobiology.

[67]  T. Jessell,et al.  Control of Interneuron Fate in the Developing Spinal Cord by the Progenitor Homeodomain Protein Dbx1 , 2001, Neuron.

[68]  Juan J Pérez-Moreno,et al.  GAL4 Drivers Specific for Type Ib and Type Is Motor Neurons in Drosophila , 2018, G3: Genes, Genomes, Genetics.

[69]  J. Nagle,et al.  Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. , 1998, Genes & development.

[70]  E. Heckscher,et al.  Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct Sensorimotor Circuits , 2017, Current Biology.

[71]  R. Fetter,et al.  NF-kappaB, IkappaB, and IRAK control glutamate receptor density at the Drosophila NMJ. , 2007, Neuron.

[72]  C. Cepko,et al.  Temporal order of bipolar cell genesis in the neural retina , 2008, Neural Development.

[73]  C. Goodman,et al.  Ectopic expression of connectin reveals a repulsive function during growth cone guidance and synapse formation , 1994, Neuron.

[74]  L. Goldstein,et al.  Receptor Tyrosine Phosphatases Are Required for Motor Axon Guidance in the Drosophila Embryo , 1996, Cell.

[75]  F. Díaz-Benjumea,et al.  Specification of neuronal subtypes by different levels of Hunchback , 2014, Development.

[76]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[77]  J. Truman,et al.  Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system , 2016, eLife.

[78]  Differential timing of neurogenesis underlies dorsal-ventral topographic projection of olfactory sensory neurons , 2017, Neural Development.

[79]  D. Dickman,et al.  A Screen for Synaptic Growth Mutants Reveals Mechanisms That Stabilize Synaptic Strength , 2019, The Journal of Neuroscience.

[80]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[81]  Rie Takayama,et al.  A temporal mechanism that produces neuronal diversity in the Drosophila visual center. , 2013, Developmental biology.

[82]  Kunihiko Kaneko,et al.  Robustness under Functional Constraint: The Genetic Network for Temporal Expression in Drosophila Neurogenesis , 2009, PLoS Comput. Biol..

[83]  A. Nose Generation of neuromuscular specificity in Drosophila: novel mechanisms revealed by new technologies , 2012, Front. Mol. Neurosci..

[84]  J. Fetcho,et al.  Spinal Interneurons Differentiate Sequentially from Those Driving the Fastest Swimming Movements in Larval Zebrafish to Those Driving the Slowest Ones , 2009, The Journal of Neuroscience.