Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene

Organic field-effect transistors (FETs) with equivalent hole and electron mobilities have been demonstrated. The devices were fabricated using a phase separated mixture of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester as the active layer and using aluminum (Al) for the source and drain electrodes. Measurements of the source-drain current versus gate voltage gave an electron mobility of μe=2.0×10−3cm2∕Vs and hole mobility of μh=1.7×10−3cm2∕Vs. The ambipolar FET properties arise from the use of Al electrodes for the source and drain; the contacts between the Al electrodes and the active layer are improved by thermal annealing at elevated temperatures (150°C), thereby enabling balanced injection for both holes and electrons in a single device.

[1]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[2]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[3]  Xiaoniu Yang,et al.  The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene–Fullerene Bulk Heterojunction , 2005 .

[4]  N. S. Sariciftci,et al.  Correlation between morphology and ambipolar transport in organic field-effect transistors , 2005 .

[5]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[6]  H. Kanamori,et al.  Facile fabrication method for p∕n-type and ambipolar transport polyphenylenevinylene-based thin-film field-effect transistors by blending C60 fullerene , 2005 .

[7]  A. Fujiwara,et al.  Fabrication of ambipolar field-effect transistor device with heterostructure of C60 and pentacene , 2004 .

[8]  Eugenio Cantatore,et al.  Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors , 2004 .

[9]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[10]  S. Jenekhe,et al.  Ambipolar Charge Transport in Air‐Stable Polymer Blend Thin‐Film Transistors , 2004 .

[11]  Robert A. Street,et al.  Short channel effects in regioregular poly(thiophene) thin film transistors , 2004 .

[12]  Siegfried Karg,et al.  Ambipolar organic field-effect transistor based on an organic heterostructure , 2004 .

[13]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[14]  S. Jenekhe,et al.  Electron Transport in Thin‐Film Transistors from an n‐Type Conjugated Polymer , 2002 .

[15]  C. D. Sheraw,et al.  Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates , 2002 .

[16]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[17]  E. Cantatore,et al.  Plastic transistors in active-matrix displays , 2001, Nature.

[18]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[19]  Zhenan Bao,et al.  The Physical Chemistry of Organic Field-Effect Transistors , 2000 .

[20]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[21]  K. Yoshino,et al.  Field-Effect Mobility of Molecularly Doped Poly(3-hexylthiophene) , 1997 .

[22]  Luisa Torsi,et al.  Organic field-effect bipolar transistors , 1996 .

[23]  Robert C. Haddon,et al.  C60 thin film transistors , 1995 .