Visualization of terahertz surface waves propagation on metal foils

Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs.

[1]  Chris Graham,et al.  Modelling of surface waves on a THz antenna detected by a near-field probe. , 2012, Optics express.

[2]  T. Elsaesser,et al.  Coherent ballistic motion of electrons in a periodic potential. , 2010, Physical review letters.

[3]  Ajay Nahata,et al.  Electric field vector characterization of terahertz surface plasmons. , 2007, Optics express.

[4]  M. Hangyo,et al.  Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region , 2013 .

[5]  Tony Jun Huang,et al.  A Reconfigurable Plasmofluidic Lens , 2013, Nature Communications.

[6]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[7]  Hanspeter Helm,et al.  Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. , 2009, Optics express.

[8]  Oleg Mitrofanov,et al.  Imaging of terahertz surface plasmon waves excited on a gold surface by a focused beam. , 2011, Optics express.

[9]  Marco Rahm,et al.  In-plane focusing of terahertz surface waves on a gradient index metamaterial film. , 2013, Optics letters.

[10]  Yan Zhang,et al.  Spatial Terahertz Modulator , 2013, Scientific Reports.

[11]  Christoph P. Hauri,et al.  GV/m Single-Cycle Terahertz Fields from a Laser-Driven Large-Size Partitioned Organic Crystal , 2014 .

[12]  A. Agrawal,et al.  Direct measurement of the Gouy phase shift for surface plasmon-polaritons. , 2007, Optics express.

[13]  Yan Zhang,et al.  Terahertz quasi-near-field real-time imaging , 2009 .

[14]  Feng Zhao,et al.  Comprehensive imaging of terahertz surface plasmon polaritons. , 2014, Optics express.

[15]  P. Planken,et al.  Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe , 2001 .

[16]  J. Kang,et al.  Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures. , 2008, Optics express.

[17]  Andreas Bitzer,et al.  Terahertz near-field imaging of metallic subwavelength holes and hole arrays , 2008 .

[18]  F. Tauser,et al.  How many-particle interactions develop after ultrafast excitation of an electron–hole plasma , 2001, Nature.

[19]  Yan Zhang,et al.  Terahertz Digital Holography , 2008 .

[20]  D. Kim,et al.  Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits , 2008 .

[21]  Yan Zhang,et al.  Terahertz real-time imaging with balanced electro-optic detection , 2010 .

[22]  B. Fischer,et al.  Terahertz time-domain spectroscopy and imaging of artificial RNA. , 2005, Optics express.

[23]  Michael J. Hoffmann,et al.  Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities , 2008 .

[24]  Mikko Leivo,et al.  Passive terahertz camera for standoff security screening. , 2010, Applied optics.

[25]  Y. C. Shen,et al.  Chemical mapping using reflection terahertz pulsed imaging , 2005 .

[26]  A. Bettiol,et al.  Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index , 2013 .

[27]  S. Winnerl,et al.  Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams , 2012, 1208.4482.

[28]  D. Bulgarevich,et al.  Highly efficient aperture array terahertz band-pass filters , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[29]  J. W. Lee,et al.  Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. , 2007, Optics express.

[30]  P S Tan,et al.  Phase singularity of surface plasmon polaritons generated by optical vortices. , 2011, Optics letters.

[31]  Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization. , 2014, Optics express.

[32]  A Doi,et al.  Real-time terahertz near-field microscope. , 2011, Optics express.

[33]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.