Climate oscillations reflected within the microbiome of Arabian Sea sediments

[1]  B. Jørgensen,et al.  Microbial community assembly and evolution in subseafloor sediment , 2017, Proceedings of the National Academy of Sciences.

[2]  V. Galy,et al.  Assessing the Blank Carbon Contribution, Isotope Mass Balance, and Kinetic Isotope Fractionation of the Ramped Pyrolysis/Oxidation Instrument at NOSAMS , 2017, Radiocarbon.

[3]  H. O. D. op den Camp,et al.  Nitrate- and nitrite-dependent anaerobic oxidation of methane. , 2016, Environmental microbiology reports.

[4]  C. Glombitza,et al.  Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan , 2016, Front. Microbiol..

[5]  W. Orsi,et al.  Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor. , 2016, Environmental microbiology reports.

[6]  David C. Smith,et al.  Bacterial diversity and community composition from seasurface to subseafloor , 2015, The ISME Journal.

[7]  P. Leavitt,et al.  Recording of climate and diagenesis through fossil pigments and sedimentary DNA at Laguna Potrok Aike, Argentina , 2015 .

[8]  Donovan H. Parks,et al.  Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics , 2015, Science.

[9]  B. Jørgensen,et al.  Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. , 2015, FEMS microbiology reviews.

[10]  H. Tomaru,et al.  Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor , 2015, Science.

[11]  Thijs J. G. Ettema,et al.  Complex archaea that bridge the gap between prokaryotes and eukaryotes , 2015, Nature.

[12]  Kenneth H. Williams,et al.  Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling , 2015, Current Biology.

[13]  Heather M. Wilcox,et al.  Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter , 2015, The ISME Journal.

[14]  S. Kasten,et al.  Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities , 2014, Science.

[15]  A. Fujiyama,et al.  High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes , 2014, Front. Microbiol..

[16]  Susanne Stadler,et al.  Microbial community analysis of deeply buried marine sediments of the New Jersey shallow shelf (IODP Expedition 313). , 2013, FEMS microbiology ecology.

[17]  Virginia P. Edgcomb,et al.  Gene expression in the deep biosphere , 2013, Nature.

[18]  Christopher Quince,et al.  Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene , 2013, Proceedings of the National Academy of Sciences.

[19]  H. Huber,et al.  Microbial syntrophy: interaction for the common good. , 2013, FEMS microbiology reviews.

[20]  T. Treude,et al.  Ocean currents shape the microbiome of Arctic marine sediments , 2012, The ISME Journal.

[21]  Andreas Schramm,et al.  Predominant archaea in marine sediments degrade detrital proteins , 2013, Nature.

[22]  L. Paulin,et al.  Sediment Bacterial Communities Reflect the History of a Sea Basin , 2013, PloS one.

[23]  M. Strous,et al.  The Binning of Metagenomic Contigs for Microbial Physiology of Mixed Cultures , 2012, Front. Microbio..

[24]  B. Dennielou,et al.  Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments , 2012 .

[25]  David C. Smith,et al.  Global distribution of microbial abundance and biomass in subseafloor sediment , 2012, Proceedings of the National Academy of Sciences.

[26]  M. Kuypers,et al.  Benthic Nitrogen Loss in the Arabian Sea Off Pakistan , 2012, Front. Microbio..

[27]  M. Ludwig,et al.  Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions , 2012, Front. Microbio..

[28]  Stefan Schouten,et al.  Occurrence and distribution of ladderane oxidation products in different oceanic regimes , 2012 .

[29]  W. Röling,et al.  Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals. , 2012, FEMS microbiology ecology.

[30]  V. Barbe,et al.  Genome Sequence of the Marine Bacterium Marinobacter hydrocarbonoclasticus SP17, Which Forms Biofilms on Hydrophobic Organic Compounds , 2012, Journal of bacteriology.

[31]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[32]  M. Barucca,et al.  Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep‐sea sediments , 2011, Molecular ecology.

[33]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[34]  Haixu Tang,et al.  FragGeneScan: predicting genes in short and error-prone reads , 2010, Nucleic acids research.

[35]  M. Scranton,et al.  Marine hypoxia/anoxia as a source of CH4 and N2O. , 2010 .

[36]  R. Parkes,et al.  Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark) , 2010 .

[37]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[38]  B. Ward,et al.  Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone , 2010 .

[39]  L. Giosan,et al.  DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene , 2009 .

[40]  M. Strous,et al.  Biochemistry and molecular biology of anammox bacteria , 2009, Critical reviews in biochemistry and molecular biology.

[41]  B. Ward,et al.  Denitrifying Bacterial Community Composition Changes Associated with Stages of Denitrification in Oxygen Minimum Zones , 2009, Microbial Ecology.

[42]  J. M. Fulton,et al.  Measurement of 13C and 15N isotopic composition on nanomolar quantities of C and N. , 2009, Analytical chemistry.

[43]  Stephan C Schuster,et al.  Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment , 2008, Proceedings of the National Academy of Sciences.

[44]  M. Ziegler,et al.  Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores , 2008 .

[45]  J. Hayes,et al.  Antarctic sediment chronology by programmed‐temperature pyrolysis: Methodology and data treatment , 2008 .

[46]  E. Bard,et al.  Evidence of ventilation changes in the Arabian Sea during the late Quaternary: Implication for denitrification and nitrous oxide emission , 2007 .

[47]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[48]  M. Wagner,et al.  Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. , 2007, Environmental microbiology.

[49]  L. Codispoti,et al.  Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone , 2006 .

[50]  Susan M. Huse,et al.  Microbial diversity in the deep sea and the underexplored “rare biosphere” , 2006, Proceedings of the National Academy of Sciences.

[51]  B. Jørgensen,et al.  Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  P. Richardson,et al.  The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans , 2006, Journal of bacteriology.

[53]  K. Nealson,et al.  THE PALEOME: LETTERS FROM ANCIENT EARTH , 2006 .

[54]  R. Danovaro,et al.  Pelagic-Benthic Coupling and Diagenesis of Nucleic Acids in a Deep-Sea Continental Margin and an Open-Slope System of the Eastern Mediterranean , 2005, Applied and Environmental Microbiology.

[55]  R. Danovaro,et al.  Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning , 2005, Science.

[56]  Andrew J. Weightman,et al.  Deep sub-seafloor prokaryotes stimulated at interfaces over geological time , 2005, Nature.

[57]  Roberto Danovaro,et al.  Simultaneous Recovery of Extracellular and Intracellular DNA Suitable for Molecular Studies from Marine Sediments , 2005, Applied and Environmental Microbiology.

[58]  Gerald R. Dickens,et al.  Distributions of Microbial Activities in Deep Subseafloor Sediments , 2004, Science.

[59]  T. Creczynski-Pasa,et al.  Energetic metabolism of Chromobacterium violaceum. , 2004, Genetics and molecular research : GMR.

[60]  K. Nealson,et al.  Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk , 2003, Applied and Environmental Microbiology.

[61]  P. Grootes,et al.  Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability , 2003 .

[62]  H. Cypionka,et al.  Ongoing Modification of Mediterranean Pleistocene Sapropels Mediated by Prokaryotes , 2002, Science.

[63]  M. Altabet,et al.  The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 , 2002, Nature.

[64]  J. Kuever,et al.  Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. , 2000, International journal of systematic and evolutionary microbiology.

[65]  R. Parkes,et al.  Recent studies on bacterial populations and processes in subseafloor sediments: A review , 2000 .

[66]  R. Y. Morita,et al.  Is H2 the Universal Energy Source for Long-Term Survival? , 1999, Microbial Ecology.

[67]  H. Schulz,et al.  Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan , 1999 .

[68]  H. Strauss,et al.  Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea , 1999 .

[69]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[70]  H. Schulz,et al.  Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years , 1998, Nature.

[71]  H. Schulz,et al.  Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years , 1998 .

[72]  A. Rosell‐Melé,et al.  Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .

[73]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[74]  Lucas J. Stal,et al.  Fermentation in cyanobacteria , 1997 .

[75]  L. Forney,et al.  Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA , 1997, Applied and environmental microbiology.

[76]  H. Schulz,et al.  Laminated sediments from the oxygen-minimum zone of the northeastern Arabian Sea , 1996, Geological Society, London, Special Publications.

[77]  H. Schulz,et al.  Sampling the oxygen minimum zone off Pakistan: glacial-interglacial variations of anoxia and productivity (preliminary results, sonne 90 cruise) , 1995 .

[78]  W. Prell,et al.  Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios , 1995, Nature.

[79]  K. Goodman,et al.  Deep bacterial biosphere in Pacific Ocean sediments , 1994, Nature.

[80]  P. Meyers Preservation of elemental and isotopic source identification of sedimentary organic matter , 1994 .

[81]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[82]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon.

[83]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[84]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[85]  D. Canfield,et al.  Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. , 1989, Deep-sea research. Part A, Oceanographic research papers.

[86]  F. Prahl,et al.  Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment , 1987, Nature.

[87]  L. Codispoti,et al.  Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean , 1985 .

[88]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[89]  J. G. Kuenen,et al.  Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions , 1981 .

[90]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[91]  N. Entner,et al.  Glucose and gluconic acid oxidation of Pseudomonas saccharophila. , 1952, The Journal of biological chemistry.