Multiplicative Factorization of Noisy-Max

The noisy-or and its generalization noisy-max have been utilized to reduce the complexity of knowledge acquisition. In this paper, we present a new representation of noisy-max that allows for efficient inference in general Bayesian networks. Empirical studies show that our method is capable of computing queries in well-known large medical networks, QMR-DT and CPCS, for which no previous exact inference method has been shown to perform well.

[1]  I. Good A CAUSAL CALCULUS (I)* , 1961, The British Journal for the Philosophy of Science.

[2]  Randolph A. Miller,et al.  Using Causal Knowledge to Create Simulated Patient Cases: The CPCS Project as an Extension of INTERNIST-1 , 1988 .

[3]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[4]  Bruce D'Ambrosio,et al.  Local expression languages for probabilistic dependence , 1995, Int. J. Approx. Reason..

[5]  Steen Andreassen,et al.  A munin network for the median nerve - a case study on loops , 1989, Appl. Artif. Intell..

[6]  Ross D. Shachter,et al.  Symbolic Probabilistic Inference in Belief Networks , 1990, AAAI.

[7]  Sampath Srinivas,et al.  A Generalization of the Noisy-Or Model , 1993, UAI.

[8]  Nevin Lianwen Zhang,et al.  Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..

[9]  Bruce D'Ambrosio,et al.  Representations and algorithms for efficient inference in bayesian networks , 1999 .

[10]  Bruce D'Ambrosio,et al.  Symbolic Probabilistic Inference in Large BN20 Networks , 1994, UAI.

[11]  Nevin Lianwen Zhang,et al.  Inference with Causal Independence in the CPSC Network , 1995, UAI.

[12]  Marek J. Druzdzel,et al.  Qualtitative propagation and scenario-based scheme for exploiting probabilistic reasoning , 1990, UAI.

[13]  Max Henrion,et al.  Some Practical Issues in Constructing Belief Networks , 1987, UAI.

[14]  Nevin Lianwen Zhang,et al.  Intercausal Independence and Heterogeneous Factorization , 1994, UAI.

[15]  Judea Pearl,et al.  A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.

[16]  Li Yan,et al.  Independence of causal influence and clique tree propagation , 1997, Int. J. Approx. Reason..

[17]  Francisco Javier Díez,et al.  Parameter adjustment in Bayes networks. The generalized noisy OR-gate , 1993, UAI.

[18]  David Heckerman,et al.  A Tractable Inference Algorithm for Diagnosing Multiple Diseases , 2013, UAI.

[19]  Gregory M. Provan,et al.  Knowledge Engineering for Large Belief Networks , 1994, UAI.

[20]  David Heckerman,et al.  Causal Independence for Knowledge Acquisition and Inference , 1993, UAI.