Challenges and perspectives on high and intermediate-temperature sodium batteries

Energy storage systems are selected depending on factors such as storage capacity, available power, discharge time, self-discharge, efficiency, or durability. Additional parameters to be considered are safety, cost, feasibility, and environmental aspects. Sodium-based batteries (Na–S, NaNiCl2) typically require operation temperatures of 300–350 °C. The high operating temperatures substantially increase the operating costs and raise safety issues. This updated review describes the state-of-the-art materials for high-temperature sodium batteries and the trends towards the development and optimization of intermediate and low-temperature devices. Recent advances in inorganic solid electrolytes, glass-ceramic electrolytes, and polymer solid electrolytes are of immense importance in all-solid-state sodium batteries. Systems such as Na+ super ionic conductor (NASICON, Na1+xZr2P3–xSixO12 (0 ≤ x ≤ 3)), glass-ceramic 94Na3PS4·6Na4SiS4, and polyethylene oxide (PEO)–sodium triflate (NaCF3SO3) are also discussed. Room temperature ionic liquids (RTILs) are also included as novel electrolyte solvents. This update discusses the progress of on-going strategies to enhance the conductivity, optimize the electrolyte/electrode interface, and improve the cell design of emerging technologies. This work aims to cover the recent advances in electrode and electrolyte materials for sodium–sulfur and sodium–metal-halide (zeolite battery research Africa project (ZEBRA)) batteries for use at high and intermediate temperatures.

[1]  E. Busmann,et al.  Die Kristallstrukturen von α-Na2S2 und K2S2, β-Na2S2 und Na2Se2 , 1962 .

[2]  R. Tegman The crystal structure of sodium tetrasulphide, Na2S4 , 1973 .

[3]  B. Cleaver,et al.  Properties of fused polysulphides—IV. Cryoscopic studies on solutions of alkali metal polysulphides in potassium thiocyanate , 1973 .

[4]  I. Wynn Jones,et al.  RECENT ADVANCES IN THE DEVELOPMENT OF SODIUM-SULPHUR BATTERIES FOR LOAD LEVELLING AND MOTIVE POWER APPLICATIONS , 1977 .

[5]  K. M. Abraham,et al.  A low temperature NaS battery incorporating A soluble S cathode , 1978 .

[6]  T. Tang,et al.  Electrical degradation of β-alumina , 1981 .

[7]  T. Tang,et al.  Electrical degradation of ß-alumina , 1982 .

[8]  A. R. Tilley,et al.  The sodium sulfur battery , 1985 .

[9]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[10]  Dong-Duk Lee,et al.  The relative stability ofβ andβ″-phases in Na2O-Al2O3 beta alumina , 1990 .

[11]  M. Munshi Handbook of Solid State Batteries and Capacitors , 1995 .

[12]  Arnold van Zyl,et al.  Review of the zebra battery system development , 1996 .

[13]  A. Pelton,et al.  The Na-S (Sodium-Sulfur) System , 1997 .

[14]  D. Schmal,et al.  Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles , 1999 .

[15]  Thomas P J Crompton Mbbs BSc Mrcs Battery Reference Book , 2000 .

[16]  J. Prakash,et al.  Electrochemical Behavior of Nonporous Ni / NiCl2 Electrodes in Chloroaluminate Melts , 2000 .

[17]  Peter W Voorhees,et al.  Growth and Coarsening , 2002 .

[18]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[19]  D. Macfarlane,et al.  Fast ion conduction in molecular plastic crystals , 2003 .

[20]  Michel Armand,et al.  The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , 2004, Nature materials.

[21]  C. Dustmann Advances in ZEBRA batteries , 2004 .

[22]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[23]  Hiroyuki Ohno,et al.  Electrochemical Aspects of Ionic Liquids: Ohno/Electrochemical Aspects of Ionic Liquids , 2005 .

[24]  Nigel P. Brandon,et al.  Concept and system design for a ZEBRA battery-intermediate temperature solid oxide fuel cell hybrid vehicle , 2006 .

[25]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[26]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[27]  Jou-Hyeon Ahn,et al.  Room-temperature solid-state sodium/sulfur battery , 2006 .

[28]  Tsutomu Minami,et al.  Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries , 2006 .

[29]  P. Kohl,et al.  Catalytic additives for the reversible reduction of sodium in chloroaluminate ionic liquids , 2006 .

[30]  Jou-Hyeon Ahn,et al.  Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte , 2007 .

[31]  Jiulin Wang,et al.  Room temperature Na/S batteries with sulfur composite cathode materials , 2007 .

[32]  M. Armand,et al.  Building better batteries , 2008, Nature.

[33]  H. Ahn,et al.  The short-term cycling properties of Na/PVdF/S battery at ambient temperature , 2008 .

[34]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[35]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[36]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[37]  Aninda J. Bhattacharyya,et al.  Increasing ionic conductivity of polymer–sodium salt complex by addition of a non-ionic plastic crystal , 2010 .

[38]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[39]  Z. Zhong,et al.  In situ X-ray diffraction of prototype sodium metal halide cells: Time and space electrochemical profiling , 2011 .

[40]  Hamidreza Zareipour,et al.  Energy storage for mitigating the variability of renewable electricity sources: An updated review , 2010 .

[41]  Eamon McKeogh,et al.  Techno-economic review of existing and new pumped hydro energy storage plant , 2010 .

[42]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[43]  P. Voorhees,et al.  Growth and Coarsening: Ostwald Ripening in Material Processing , 2010 .

[44]  S. Hashmi,et al.  Ionic liquid based sodium ion conducting gel polymer electrolytes , 2010 .

[45]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[46]  Hui Yang,et al.  Synthesis and characterization of titanium doped sodium beta″-alumina , 2011 .

[47]  直紀 平山 「イオン液体」という物質群 —歴史と定義— , 2011 .

[48]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[49]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[50]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[51]  Jou-Hyeon Ahn,et al.  Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte , 2011 .

[52]  A. Petric,et al.  Thermodynamic Analysis of Reaction Products Observed in ZEBRA Cell Cathodes , 2011 .

[53]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[54]  Chang-Hui Lee,et al.  Numerical study on the thermal management system of a molten sodium-sulfur battery module , 2012 .

[55]  Shinji Inazawa,et al.  Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide , 2012 .

[56]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[57]  Zhenguo Yang,et al.  Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries , 2012 .

[58]  André Faaij,et al.  Performance of batteries for electric vehicles on short and longer term , 2012 .

[59]  G. F. Reed,et al.  Survey of battery energy storage systems and modeling techniques , 2012, 2012 IEEE Power and Energy Society General Meeting.

[60]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[61]  G·斯维夫特 Electrolyte materials, thermal battery components, and thermal batteries for intermediate temperature applications , 2012 .

[62]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[63]  Juan Carlos Balda,et al.  Smart grid applications of selected energy storage technologies , 2012, 2012 IEEE PES Innovative Smart Grid Technologies (ISGT).

[64]  Z. Yang,et al.  A novel low-cost sodium–zinc chloride battery , 2013 .

[65]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[66]  이강택,et al.  High conductivity nasicon electrolyte for room temperature solid-state sodium ion batteries , 2013 .

[67]  Sebastian Wenzel,et al.  Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte , 2013 .

[68]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[69]  R. Steudel,et al.  Polysulfide chemistry in sodium-sulfur batteries and related systems--a computational study by G3X(MP2) and PCM calculations. , 2013, Chemistry.

[70]  Z. Wen,et al.  Development and characterizations of Bi2O3-containing glass–ceramic sealants for sodium sulfur battery , 2013 .

[71]  Supriya Roy,et al.  Influence of Cationic ordering on ion transport in NASICONs: Molecular dynamics study , 2013 .

[72]  쿠마 선딥,et al.  Sealing glass composition and article , 2013 .

[73]  Byung Gon Kim,et al.  One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. , 2013, Nano letters.

[74]  Zhenguo Yang,et al.  Advanced Intermediate-Temperature Na-S Battery , 2013 .

[75]  M. Watanabe,et al.  Room-Temperature Ionic Liquid Electrolytes for Alkali Metal-Sulfur Batteries , 2013 .

[76]  J. Yamaki,et al.  Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds , 2013 .

[77]  Zhenguo Yang,et al.  High energy density Na–S/NiCl2 hybrid battery , 2013 .

[78]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[79]  N. H. Zainol,et al.  Studies on Sodium Ion Conducting Gel Polymer Electrolytes , 2013 .

[80]  Jill S. Wheeler,et al.  The Influences of Excess Sodium on Low‐Temperature NaSICON Synthesis , 2013 .

[81]  Zhonghua Gu,et al.  Main Challenges for High Performance NAS Battery: Materials and Interfaces , 2013 .

[82]  Vincent L. Sprenkle,et al.  Cell degradation of a Na–NiCl2 (ZEBRA) battery , 2013 .

[83]  A. Hayashi,et al.  Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling , 2014 .

[84]  A. Hayashi,et al.  Improvement of Rate Performance for All-Solid-State Na15Sn4/Amorphous TiS3 Cells Using 94Na3PS4·6Na4SiS4 Glass-Ceramic Electrolytes , 2014 .

[85]  Yunhui Gong,et al.  An All‐Ceramic Solid‐State Rechargeable Na+‐Battery Operated at Intermediate Temperatures , 2014 .

[86]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[87]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[88]  사이 브하바라주,et al.  Intermediate temperature sodium-metal halide battery , 2014 .

[89]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[90]  Hui Yang,et al.  Advanced intermediate temperature sodium copper chloride battery , 2014 .

[91]  Vincent L. Sprenkle,et al.  Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C , 2014 .

[92]  Keeyoung Jung,et al.  Finite element analysis study on the thermomechanical stability of thermal compression bonding (TCB) joints in tubular sodium sulfur cells , 2014 .

[93]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[94]  A. Hayashi,et al.  Sulfide Glass‐Ceramic Electrolytes for All‐Solid‐State Lithium and Sodium Batteries , 2014 .

[95]  Devon R. Mortensen,et al.  X-ray absorption measurements on nickel cathode of sodium-beta alumina batteries: Fe-Ni-Cl chemical associations , 2014 .

[96]  A. Manthiram,et al.  Capacity Enhancement and Discharge Mechanisms of Room‐Temperature Sodium–Sulfur Batteries , 2014 .

[97]  Wonsang Koh,et al.  Development of Molten Sodium Battery Using NaSICON Solid Electrolyte Membrane for Stationary and Large-Scale Electrical Energy Storage System , 2014 .

[98]  Naoya Enomoto,et al.  C-axis oriented β″-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering , 2014 .

[99]  Porous iron oxide coating on β″-alumina ceramics for Na-based batteries , 2014 .

[100]  Naehyuck Chang,et al.  A scalable and flexible hybrid energy storage system design and implementation , 2014 .

[101]  A. Manthiram,et al.  Room-Temperature Sodium–Sulfur Batteries with Liquid-Phase Sodium Polysulfide Catholytes and Binder-Free Multiwall Carbon Nanotube Fabric Electrodes , 2014 .

[102]  Lynden A. Archer,et al.  Sodium–oxygen batteries: a new class of metal–air batteries , 2014 .

[103]  U. Ahmadu NASICON: Synthesis, Structure and Electrical Characterization , 2014 .

[104]  Vincent L. Sprenkle,et al.  The role of FeS in initial activation and performance degradation of Na–NiCl2 batteries , 2014 .

[105]  사이 브하바라주,et al.  Low viscosity/high conductivity sodium haloaluminate electrolyte , 2014 .

[106]  Masahiro Tatsumisago,et al.  X‐ray Crystal Structure Analysis of Sodium‐Ion Conductivity in 94 Na3PS4⋅6 Na4SiS4 Glass‐Ceramic Electrolytes , 2014 .

[107]  Keeyoung Jung,et al.  Stress analyses for the glass joints of contemporary sodium sulfur batteries , 2014 .

[108]  T. Yamashita,et al.  First-Principles Study on Structural and Electronic Properties of α-S and Na–S Crystals , 2014 .

[109]  H. Althues,et al.  Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. , 2014, Chemical communications.

[110]  Seongmin Ha,et al.  Sodium-metal halide and sodium-air batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[111]  Junhe Yang,et al.  Nano‐Copper‐Assisted Immobilization of Sulfur in High‐Surface‐Area Mesoporous Carbon Cathodes for Room Temperature Na‐S Batteries , 2014 .

[112]  A. Manthiram,et al.  Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. , 2014, The journal of physical chemistry letters.

[113]  Guoqiang Ma,et al.  Sol–gel synthesis of Mg2+ stabilized Na-β″/β-Al2O3 solid electrolyte for sodium anode battery , 2014 .

[114]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[115]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[116]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[117]  S. Sen,et al.  Fast Na‐Ion Conduction in a Chalcogenide Glass—Ceramic in the Ternary System Na2Se—Ga2Se3—GeSe2. , 2014 .

[118]  Hui Yang,et al.  The mechanical and electrical properties of ZrO2–TiO2–Na-β/β″-alumina composite electrolyte synthesized via a citrate sol–gel method , 2014 .

[119]  Vilayanur V. Viswanathan,et al.  An Advanced Na–FeCl2 ZEBRA Battery for Stationary Energy Storage Application , 2015 .

[120]  U. Waghmare,et al.  Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12 , 2015 .

[121]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[122]  A. Hayashi,et al.  All-solid-state sodium batteries using amorphous TiS 3 electrode with high capacity , 2015 .

[123]  Maria Skyllas-Kazacos,et al.  Redox Flow Batteries , 2015 .

[124]  Geoffrey P. Hammond,et al.  Indicative energy technology assessment of advanced rechargeable batteries , 2015 .

[125]  D. Bedrov,et al.  Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. , 2015, ACS nano.

[126]  A. Manthiram,et al.  Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries. , 2015, Chemistry.

[127]  A. Manthiram,et al.  Ambient temperature sodium-sulfur batteries. , 2015, Small.

[128]  K. Shinozaki,et al.  Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12 , 2015 .

[129]  Vincenzo Antonucci,et al.  Integration of μ-SOFC Generator and ZEBRA Batteries for Domestic Application and Comparison with other μ-CHP Technologies , 2015 .

[130]  Keeyoung Jung,et al.  A duplex β″-Al 2 O 3 solid electrolyte consisting of a thin dense layer and a porous substrate , 2015 .

[131]  B. Scrosati,et al.  Ionic liquid mixtures with tunable physicochemical properties , 2015 .

[132]  Sai Bhavaraju,et al.  Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte , 2015 .

[133]  Taeeun Yim,et al.  A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte , 2015, Scientific Reports.

[134]  Keeyoung Jung,et al.  Enhanced corrosion resistance of hypo-eutectic Al-1Mg-xSi alloys against molten sodium attack in high temperature sodium sulfur batteries , 2015 .

[135]  Chengfei Zhu,et al.  Effect of Na2O content on properties of beta alumina solid electrolytes , 2015 .

[136]  Chang-Hui Lee,et al.  Cell safety analysis of a molten sodium–sulfur battery under failure mode from a fracture in the solid electrolyte , 2015 .

[137]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[138]  A. Manthiram,et al.  Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium–Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2S/Activated Carbon Nanofiber Cathode , 2016 .

[139]  Bingan Lu,et al.  Covalent sulfur for advanced room temperature sodium-sulfur batteries , 2016 .

[140]  M. Armand,et al.  Novel Na+ Ion Diffusion Mechanism in Mixed Organic–Inorganic Ionic Liquid Electrolyte Leading to High Na+ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells. , 2016 .

[141]  Jou-Hyeon Ahn,et al.  A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode , 2016 .

[142]  Gerbrand Ceder,et al.  Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4 , 2016 .

[143]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[144]  Hendrik Kondziella,et al.  Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies , 2016 .

[145]  Yu Zhu,et al.  A nitrogen doped carbonized metal–organic framework for high stability room temperature sodium–sulfur batteries , 2016 .

[146]  Taeeun Yim,et al.  A joint experimental and theoretical determination of the structure of discharge products in Na-SO2 batteries. , 2016, Physical chemistry chemical physics : PCCP.

[147]  Byoungwoo Kang,et al.  Sodium Ion Diffusion in Nasicon (Na3Zr2Si2PO12) Solid Electrolytes: Effects of Excess Sodium. , 2016, ACS applied materials & interfaces.

[148]  Vincent L. Sprenkle,et al.  Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density , 2016, Nature Communications.

[149]  D. Zhao,et al.  Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. , 2016, Journal of the American Chemical Society.

[150]  Bryan D. Vogt,et al.  Ultra-long cycle life, low-cost room temperature sodium-sulfur batteries enabled by highly doped (N,S) nanoporous carbons , 2017 .

[151]  Vincenzo Antonucci,et al.  Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application , 2017 .