Fine hierarchies via Priestley duality

Abstract In applications of the fine hierarchies their characterizations in terms of the so called alternating trees are of principal importance. Also, in many cases a suitable version of many–one reducibility exists that fits a given fine hierarchy. With a use of Priestley duality we obtain a surprising result that suitable versions of alternating trees and of m -reducibilities may be found for any given fine hierarchy, i.e. the methods of alternating trees and m -reducibilities are quite general, which is of some methodological interest. Along with the hierarchies of sets, we consider also more general hierarchies of k -partitions and in this context propose some new notions and establish new results, in particular extend the above-mentioned results for hierarchies of sets.

[1]  Klaus W. Wagner A Note on Parallel Queries and the Symmetric-Difference Hierarchy , 1998, Inf. Process. Lett..

[2]  Klaus W. Wagner,et al.  The boolean hierarchy of NP-partitions , 2008, Inf. Comput..

[3]  Victor L. Selivanov Classifying omega-regular partitions , 2007, LATA.

[4]  Victor L. Selivanov,et al.  Fine hierarchies and m-reducibilities in theoretical computer science , 2008, Theor. Comput. Sci..

[5]  Sven Kosub NP-Partitions over Posets with an Application to Reducing the Set of Solutions of NP Problems , 2004, Theory of Computing Systems.

[6]  V. L. Selivanov Hierearchies of hyperarithmetical sets and functions , 1983 .

[7]  Victor L. Selivanov Two Refinements of the Polynomial Hierarcht , 1994, STACS.

[8]  V. L. Selivanov Refining the polynomial hierarchy , 1999 .

[9]  G. Grätzer General Lattice Theory , 1978 .

[10]  Erkko Lehtonen Labeled posets are universal , 2008, Eur. J. Comb..

[11]  Majid Alizadeh,et al.  Boolean Algebras , 2022, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[12]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[13]  Victor L. Selivanov,et al.  Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests , 2007, J. Log. Comput..

[14]  Victor Selivanov,et al.  Fine Hierarchy of Regular Omega-Languages , 1995, Theor. Comput. Sci..

[15]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[16]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[17]  Jérémie Cabessa,et al.  A game theoretical approach to the algebraic counterpart of the Wagner hierarchy: Part I , 2009, RAIRO Theor. Informatics Appl..

[18]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[19]  Victor L. Selivanov,et al.  Fine Hierarchy of Regular Aperiodic omega-Languages , 2008, Int. J. Found. Comput. Sci..

[20]  Victor L. Selivanov,et al.  Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.

[21]  J. W. Addison THE METHOD OF ALTERNATING CHAINS , 2014 .

[22]  Christian Glaßer,et al.  Efficient algorithms for membership in boolean hierarchies of regular languages , 2008, Theor. Comput. Sci..

[23]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[24]  R. Goodstein Boolean algebra , 1963 .

[25]  A. Louveau,et al.  Some results in the wadge hierarchy of borel sets , 1983 .

[26]  Victor L. Selivanov,et al.  Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests , 2006, CiE.

[27]  Christian Glaßer,et al.  The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..

[28]  Erkko Lehtonen Descending Chains and Antichains of the Unary, Linear, and Monotone Subfunction Relations , 2006, Order.

[29]  Victor L. Selivanov,et al.  A reducibility for the dot-depth hierarchy , 2005, Theor. Comput. Sci..

[30]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[31]  Victor L. Selivanov A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.

[32]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[33]  M. Stone Applications of the theory of Boolean rings to general topology , 1937 .

[34]  Victor L. Selivanov A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.

[35]  V. Selivanov Boolean Hierarchies of Partitions over a Reducible Base , 2004 .

[36]  Peter Hilton,et al.  Introduction to the Theory of Categories and Functors , 1968 .

[37]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[38]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[39]  Victor L. Selivanov,et al.  Hierarchies and reducibilities on regular languages related to modulo counting , 2009, RAIRO Theor. Informatics Appl..

[40]  A. Kechris Classical descriptive set theory , 1987 .

[41]  Victor L. Selivanov,et al.  Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..

[42]  Victor L. Selivanov,et al.  The quotient algebra of labeled forests modulo h-equivalence , 2007 .

[43]  Y. Ershov A hierarchy of sets. I , 1968 .

[44]  M. Stone The theory of representations for Boolean algebras , 1936 .