Fine hierarchies via Priestley duality
暂无分享,去创建一个
[1] Klaus W. Wagner. A Note on Parallel Queries and the Symmetric-Difference Hierarchy , 1998, Inf. Process. Lett..
[2] Klaus W. Wagner,et al. The boolean hierarchy of NP-partitions , 2008, Inf. Comput..
[3] Victor L. Selivanov. Classifying omega-regular partitions , 2007, LATA.
[4] Victor L. Selivanov,et al. Fine hierarchies and m-reducibilities in theoretical computer science , 2008, Theor. Comput. Sci..
[5] Sven Kosub. NP-Partitions over Posets with an Application to Reducing the Set of Solutions of NP Problems , 2004, Theory of Computing Systems.
[6] V. L. Selivanov. Hierearchies of hyperarithmetical sets and functions , 1983 .
[7] Victor L. Selivanov. Two Refinements of the Polynomial Hierarcht , 1994, STACS.
[8] V. L. Selivanov. Refining the polynomial hierarchy , 1999 .
[9] G. Grätzer. General Lattice Theory , 1978 .
[10] Erkko Lehtonen. Labeled posets are universal , 2008, Eur. J. Comb..
[11] Majid Alizadeh,et al. Boolean Algebras , 2022, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.
[12] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[13] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests , 2007, J. Log. Comput..
[14] Victor Selivanov,et al. Fine Hierarchy of Regular Omega-Languages , 1995, Theor. Comput. Sci..
[15] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[16] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[17] Jérémie Cabessa,et al. A game theoretical approach to the algebraic counterpart of the Wagner hierarchy: Part I , 2009, RAIRO Theor. Informatics Appl..
[18] Klaus W. Wagner,et al. The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..
[19] Victor L. Selivanov,et al. Fine Hierarchy of Regular Aperiodic omega-Languages , 2008, Int. J. Found. Comput. Sci..
[20] Victor L. Selivanov,et al. Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.
[21] J. W. Addison. THE METHOD OF ALTERNATING CHAINS , 2014 .
[22] Christian Glaßer,et al. Efficient algorithms for membership in boolean hierarchies of regular languages , 2008, Theor. Comput. Sci..
[23] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[24] R. Goodstein. Boolean algebra , 1963 .
[25] A. Louveau,et al. Some results in the wadge hierarchy of borel sets , 1983 .
[26] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests , 2006, CiE.
[27] Christian Glaßer,et al. The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..
[28] Erkko Lehtonen. Descending Chains and Antichains of the Unary, Linear, and Monotone Subfunction Relations , 2006, Order.
[29] Victor L. Selivanov,et al. A reducibility for the dot-depth hierarchy , 2005, Theor. Comput. Sci..
[30] F. Hausdorff. Grundzüge der Mengenlehre , 1914 .
[31] Victor L. Selivanov. A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.
[32] Joseph B. Kruskal,et al. The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.
[33] M. Stone. Applications of the theory of Boolean rings to general topology , 1937 .
[34] Victor L. Selivanov. A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.
[35] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[36] Peter Hilton,et al. Introduction to the Theory of Categories and Functors , 1968 .
[37] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[38] Hilary A. Priestley,et al. Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .
[39] Victor L. Selivanov,et al. Hierarchies and reducibilities on regular languages related to modulo counting , 2009, RAIRO Theor. Informatics Appl..
[40] A. Kechris. Classical descriptive set theory , 1987 .
[41] Victor L. Selivanov,et al. Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..
[42] Victor L. Selivanov,et al. The quotient algebra of labeled forests modulo h-equivalence , 2007 .
[43] Y. Ershov. A hierarchy of sets. I , 1968 .
[44] M. Stone. The theory of representations for Boolean algebras , 1936 .