A level-set method for two-phase flows with soluble surfactant

Abstract A level-set method is presented for solving two-phase flows with soluble surfactant. The Navier–Stokes equations are solved along with the bulk surfactant and the interfacial surfactant equations. In particular, the convection–diffusion equation for the bulk surfactant on the irregular moving domain is solved by using a level-set based diffusive-domain method. A conservation law for the total surfactant mass is derived, and a re-scaling procedure for the surfactant concentrations is proposed to compensate for the surfactant mass loss due to numerical diffusion. The whole numerical algorithm is easy for implementation. Several numerical simulations in 2D and 3D show the effects of surfactant solubility on drop dynamics under shear flow.

[1]  K. Stebe,et al.  Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants , 1996 .

[2]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[3]  Metin Muradoglu,et al.  A front-tracking method for computation of interfacial flows with soluble surfactants , 2008, J. Comput. Phys..

[4]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[5]  J. Lowengrub,et al.  Analysis of the diffuse-domain method for solving PDEs in complex geometries , 2014, 1407.7480.

[6]  L. Gary Leal,et al.  The Influence of Surfactant on the Deformation and Breakup of a Viscous Drop: The Effect of Surfactant Solubility , 1994 .

[7]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[8]  J. Goerke,et al.  Pulmonary surfactant: functions and molecular composition. , 1998, Biochimica et biophysica acta.

[9]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[10]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[11]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[12]  Frédéric Gibou,et al.  Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions , 2010, J. Comput. Phys..

[13]  M. Siegel,et al.  A hybrid numerical method for interfacial fluid flow with soluble surfactant , 2010, J. Comput. Phys..

[14]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[15]  Haihu Liu,et al.  Phase-field modeling droplet dynamics with soluble surfactants , 2010, J. Comput. Phys..

[16]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[17]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[18]  Xiangrong Li,et al.  SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE DOMAIN APPROACH. , 2009, Communications in mathematical sciences.

[19]  Shilpa Khatri,et al.  An embedded boundary method for soluble surfactants with interface tracking for two-phase flows , 2014, J. Comput. Phys..

[20]  Jie Zhang,et al.  A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport , 2006, J. Comput. Phys..

[21]  Wouter-Jan Rappel,et al.  Computational model for cell morphodynamics. , 2010, Physical review letters.

[22]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[23]  Frédéric Gibou,et al.  Level-set simulations of soluble surfactant driven flows , 2017, J. Comput. Phys..

[24]  Weidong Shi,et al.  An Adaptive Semi-Lagrangian Level-Set Method for Convection-Diffusion Equations on Evolving Interfaces , 2017 .

[25]  Norman R. Morrow,et al.  Recovery of oil by spontaneous imbibition , 2001 .

[26]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[27]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[28]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[29]  M. Lai,et al.  Controlling droplet bouncing and coalescence with surfactant , 2016, Journal of Fluid Mechanics.

[30]  Peng Song,et al.  A diffuse-interface method for two-phase flows with soluble surfactants , 2011, J. Comput. Phys..

[31]  Jian-Jun Xu,et al.  A level-set method for two-phase flows with moving contact line and insoluble surfactant , 2014, J. Comput. Phys..

[32]  M. Gelinsky,et al.  Chemotaxis of mesenchymal stem cells within 3D biomimetic scaffolds--a modeling approach. , 2011, Journal of biomechanics.

[33]  Hongkai Zhao,et al.  Numerical Study of Surfactant-Laden Drop-Drop Interactions , 2011 .

[34]  Yin Yang,et al.  A level-set continuum method for two-phase flows with insoluble surfactant , 2012, J. Comput. Phys..

[35]  Hans C. Mayer,et al.  Microscale tipstreaming in a microfluidic flow focusing device , 2006 .

[36]  F. Fenton,et al.  Modeling wave propagation in realistic heart geometries using the phase-field method. , 2005, Chaos.

[37]  Axel Voigt,et al.  A Note on the Convergence Analysis of a Diffuse-domain Approach , 2012, Comput. Methods Appl. Math..

[38]  Metin Muradoglu,et al.  Simulations of soluble surfactants in 3D multiphase flow , 2014, J. Comput. Phys..

[39]  Frédéric Gibou,et al.  A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids , 2013, J. Comput. Phys..

[40]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[41]  J. Lowengrub,et al.  Two-phase flow in complex geometries: A diffuse domain approach. , 2010, Computer modeling in engineering & sciences : CMES.

[42]  Zhilin Li,et al.  Adaptive mesh refinement techniques for the immersed interface method applied to flow problems. , 2013, Computers & structures.

[43]  Mark Sussman,et al.  A hybrid level set-volume constraint method for incompressible two-phase flow , 2012, J. Comput. Phys..

[44]  Kuan-Yu Chen,et al.  A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant , 2014, J. Comput. Phys..