Functional renormalization group analysis of the soft mode at the QCD critical point

We make an intensive investigation of the soft mode at the quantum chromodynamics (QCD) critical point on the basis of the functional renormalization group (FRG) method in the local potential approximation. We calculate the spectral functions $\rho_{\sigma, \pi}(\omega,\, p)$ in the scalar ($\sigma$) and pseudoscalar ($\pi$) channels beyond the random phase approximation in the quark–meson model. At finite baryon chemical potential $\mu$ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the $\sigma$ channel has a support not only in the time-like ($\omega\,>\,p$) but also in the space-like ($\omega\,<\, p$) regions, which correspond to the mesonic and the particle–hole phonon excitations, respectively. We find that the energy of the peak position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the soft mode associated with the second-order transition at the QCD critical point, as has been suggested by some authors. Moreover, our extensive calculation of the spectral function in the $(\omega, p)$ plane enables us to see that the mesonic and phonon modes have the respective definite dispersion relations $\omega_{\sigma.{\rm ph}}(p)$, and it turns out that $\omega_{\sigma}(p)$ crosses the light-cone line into the space-like region, and then eventually merges into the phonon mode as the system approaches the critical point more closely. This implies that the sigma-mesonic mode also becomes soft at the critical point. We also provide numerical stability conditions that are necessary for obtaining the accurate effective potential from the flow equation.

[1]  N. Mermin,et al.  Determination of Thermodynamic Green's Functions , 1961 .

[2]  K. Redlich,et al.  Meson fluctuations and thermodynamics of the Polyakov-loop-extended quark-meson model , 2010, 1004.2665.

[3]  T. Kunihiro Quark-number susceptibility and fluctuations in the vector channel at high temperatures , 1991 .

[4]  C. Ratti,et al.  Phases of QCD: lattice thermodynamics and a field theoretical model , 2005, hep-ph/0506234.

[5]  K. Redlich,et al.  The functional renormalization group and O(4) scaling , 2009, 0904.0466.

[6]  K. Redlich,et al.  Fluctuations and isentropes near the chiral critical endpoint , 2009, 0907.1344.

[7]  Holger Gies Introduction to the Functional RG and Applications to Gauge Theories , 2006 .

[8]  Lorenz von Smekal,et al.  Real-time correlation functions in the $$O(N)$$O(N) model from the functional renormalization group , 2013, 1302.6199.

[9]  B. Schaefer,et al.  Phase structure of the Polyakov-quark-meson model , 2007, 0704.3234.

[10]  NJL-model analysis of dense quark matter , 2004, hep-ph/0402234.

[11]  J. Pawlowski,et al.  Relevance of matter and glue dynamics for baryon number fluctuations , 2015, 1508.06504.

[12]  W. Marsden I and J , 2012 .

[13]  J. Schaffner-Bielich,et al.  Phase diagram and nucleation in the Polyakov-loop-extended Quark-Meson truncation of QCD with the unquenched Polyakov-loop potential , 2016, 1601.05731.

[14]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[15]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[16]  L. Smekal,et al.  Spectral Functions for the Quark-Meson Model Phase Diagram from the Functional Renormalization Group , 2013, 1311.0630.

[17]  Y. Nakahara,et al.  Maximum entropy analysis of the spectral functions in lattice QCD , 2000, hep-lat/0011040.

[18]  B. Schaefer,et al.  Phase structure and thermodynamics of QCD , 2013, 1302.1426.

[19]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[20]  K. Redlich,et al.  Quark number fluctuations in the Polyakov loop-extended quark-meson model at finite baryon density , 2010, 1008.4570.

[21]  K. Morita,et al.  Criticality of the net-baryon number probability distribution at finite density , 2014, 1402.5982.

[22]  K. Morita,et al.  Net quark number probability distribution near the chiral crossover transition , 2013, 1301.2873.

[23]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[24]  Mark Jarrell,et al.  Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data , 1996 .

[25]  J. Wambach,et al.  Dyson–Schwinger study of chiral density waves in QCD , 2013, 1308.4303.

[26]  T. Hatsuda,et al.  Soft Modes Associated with Chiral Symmetry Breaking The Use of a QCD-Motivated Effective Interaction , 1985 .

[27]  Á. Ḿocsy,et al.  Chiral phase transition within effective models with constituent quarks , 2000, nucl-th/0007030.

[28]  Universality, the QCD critical and tricritical point, and the quark number susceptibility , 2002, hep-ph/0210284.

[29]  M. Kitazawa,et al.  Third moments of conserved charges as probes of QCD phase structure. , 2009, Physical review letters.

[30]  Y. Minami,et al.  Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation , 2009, 0907.3388.

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  M. Stephanov,et al.  Sign of kurtosis near the QCD critical point. , 2011, Physical review letters.

[33]  A. Ohnishi,et al.  Net-baryon number fluctuations across the chiral phase transition at finite density in strong-coupling lattice QCD , 2015, 1507.04527.

[34]  L. Smekal,et al.  Flow equations for spectral functions at finite external momenta , 2014, 1408.3512.

[35]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[36]  K. Aoki,et al.  Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking , 2014, 1403.0174.

[37]  F. Wilczek,et al.  Remarks on the Chiral Phase Transition in Chromodynamics , 1984 .

[38]  Xiaofeng Luo,et al.  Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions , 2015, 1512.09215.

[39]  K. Morita,et al.  Net baryon number probability distribution near the chiral phase transition , 2012, 1211.4703.

[40]  J. Pawlowski,et al.  Towards quantitative precision in the chiral crossover: Masses and fluctuation scales , 2014, 1409.8414.

[41]  Chiho Nonaka,et al.  Lattice QCD at Finite Density An Introductory Review , 2003, hep-lat/0306031.

[42]  Y. Koichi,et al.  Chiral Restoration at Finite Density and Temperature , 1989 .

[43]  M. Stephanov,et al.  Non-Gaussian fluctuations near the QCD critical point. , 2008, Physical review letters.

[44]  Kunihiro,et al.  Fluctuation effects in hot quark matter: Precursors of chiral transition at finite temperature. , 1985, Physical review letters.

[45]  K. Morita,et al.  Momentum scale dependence of the net quark number fluctuations near chiral crossover , 2014, 1409.8001.

[46]  M. Yahiro,et al.  Critical endpoint in the Polyakov-loop extended NJL model , 2007, 0710.2180.

[47]  A. Migdal Pion Fields in Nuclear Matter , 1978 .

[48]  D. T. Son,et al.  Dynamic universality class of the QCD critical point , 2004 .

[49]  William H. Press,et al.  Numerical recipes in C , 2002 .

[50]  QCD phenomenology based on a chiral effective Lagrangian , 1994, hep-ph/9401310.

[51]  H. J. Vidberg,et al.  Solving the Eliashberg equations by means ofN-point Padé approximants , 1977 .

[52]  K. Redlich,et al.  Susceptibilities and the Phase Structure of a Chiral Model with Polyakov Loops , 2007 .

[53]  Mikhail A. Stephanov QCD Phase Diagram and the Critical Point , 2004 .

[54]  C. Fischer,et al.  Polyakov loop potential at finite density , 2013, 1306.6022.

[55]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[56]  K. Rajagopal,et al.  Slowing out-of-equilibrium near the QCD critical point , 1999, hep-ph/9912274.

[57]  Paulo J. Silva,et al.  Kallen-Lehmann spectroscopy for (un)physical degrees of freedom , 2013, 1310.4069.

[58]  D. Nickel Inhomogeneous phases in the Nambu-Jona-Lasinio and quark-meson model , 2009, 0906.5295.

[59]  A. Ohnishi,et al.  Functional renormalization group study of phonon mode effects on the chiral critical point , 2012, 1210.8347.

[60]  Susceptibilities near the QCD (tri)critical point , 2006, hep-ph/0603256.

[61]  D. Nickel How many phases meet at the chiral critical point? , 2009, Physical review letters.

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  K. Redlich,et al.  Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC , 2011, 1103.3511.

[64]  Phase Diagram of QCD , 1998, hep-ph/9804290.

[65]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[66]  Event-by-Event Fluctuations in Heavy Ion Collisions and the QCD Critical Point , 1999, hep-ph/9903292.

[67]  T. Hatsuda,et al.  Possible critical phenomena associated with the chiral symmetry breaking , 1984 .

[68]  Carlos Ramírez,et al.  Bose–Einstein Condensation of Collective Electron Pairs , 2014 .

[69]  T. Kanazawa,et al.  Chiral dynamics in a magnetic field from the functional renormalization group , 2013, 1312.3124.

[70]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[71]  Kenji Fukushima,et al.  The phase diagram of dense QCD , 2010, 1005.4814.